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Metamorphic testing is a valuable technique that helps in dealing with the oracle problem. It involves testing
software against specifications of its intended behavior given in terms of so called metamorphic relations,
statements that express properties relating different software elements (e.g., different inputs, methods, etc).
The effective application of metamorphic testing strongly depends on identifying suitable domain-specific
metamorphic relations, a challenging task, that is typically manually performed.

This paper introduces MEMORIA, a novel approach that aims at automatically identifying metamorphic
relations. The technique focuses on a particular kind of metamorphic relation, which asserts equivalences
between methods and method sequences. MEMORIA works by first generating an object-protocol abstraction
of the software being tested, then using fuzzing to produce candidate relations from the abstraction, and
finally validating the candidate relations through run-time analysis. A SAT-based analysis is used to eliminate
redundant relations, resulting in a concise set of metamorphic relations for the software under test. We evaluate
our technique on a benchmark consisting of 22 Java subjects taken from the literature, and compare MEMORIA
with the metamorphic relation inference technique SBES. Our results show that by incorporating the object
protocol abstraction information, MEMORIA is able to more effectively infer meaningful metamorphic relations,
that are also more precise, compared to SBES, measured in terms of mutation analysis. Also, the SAT-based
reduction allows us to significantly reduce the number of reported metamorphic relations, while in general
having a small impact in the bug finding ability of the corresponding obtained relations.
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1 INTRODUCTION

While it is now relatively easy to produce large sets of software behaviors, e.g., via automated test
sequence or input generation, or by automatically executing and monitoring the executions of
deployed software, it is hard to use the generated behaviors for finding business logic bugs. This is
due to the fact that deciding, for a given system, if its executions correspond to correct/desired
software behavior as opposed to defective or in some sense anomalous behavior, is an inherently
manual task. This situation has caused the so-called oracle problem, i.e. the problem of effectively
distinguishing correct from incorrect software behavior, to receive significant attention by the
software engineering community [5]. Still, with the current state-of-the-art, precise software oracles
largely depend on manually produced specifications, or when automatically synthesized, often
involve implicit oracles that only check very general properties, such as deadlock freedom and no
null dereference.

To better deal with the oracle problem, metamorphic testing has been proposed [32, 43, 44].
Instead of manually describing the expected behavior for every single execution scenario, a weaker
form of oracle that applies to a large family of executions is provided at once. This oracle is known
as a metamorphic relation, and describes an expected property that relates two or more elements
of the software under test (SUT) [43, 44]. The resulting “metamorphic” oracle is in general weaker
than a precise and complete specification of the software under analysis, but at the same time is
also easier to define and provide. Moreover, metamorphic properties capture properties that are
specific to the software under analysis, as opposed to the general properties that implicit oracles
describe. As concrete examples of metamorphic properties, consider the following. If a program
p is an implementation of a mathematical commutative function, then an expected metamorphic
property of the implementation is that p(x,y) = p(y,x), for all instances of x and y. Similarly,
for an object-oriented (unbounded) stack implementation, the execution of o.push(e); o.pop()
from any non-null object o and element e, should take the object o back to its original state.

A key issue in applying metamorphic testing is the identification of suitable domain-specific
metamorphic relations [3, 11, 43, 44]. While most approaches rely on user-defined relations [9],
the difficulty of finding expressive domain-specific execution properties is directing attention to
the problem of automatically discovering, or synthesizing, metamorphic relations [8, 12, 21, 42,
48, 50, 51]. Some recent approaches gather likely metamorphic relations from code comments [8],
or from software trace generation and monitoring [21]. Unfortunately, these approaches have
issues that limit their application in practice [3]. For instance, MeMo [8], the approach that gathers
metamorphic properties from code comments, can be very efficient, but its application is limited to
very well documented and mature software projects. On the other hand, SBES [21] runs a search
algorithm in order to identify different SUT method executions that lead to the same result, which
makes SBES costly since it needs to analyze many combinations of SUT executions in order to
discover metamorphic relations.

In this paper, we present MEMORIA, an approach to automatically generate metamorphic relations
that describe the current behavior of a software under analysis. MEMORIA focuses on a particular
kind of metamorphic relation, that asserts equivalences between methods and method sequences
of the SUT. As opposed to techniques such as MeMo, MEMORIA does not require descriptive
code comments, as it generates metamorphic relations solely from the code of the SUT. At the
same time, MEMORIA is more efficient and effective than techniques such as SBES, thanks to

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 21. Publication date: July 2024.


https://doi.org/10.1145/3643747

Abstraction-Aware Inference of Metamorphic Relations 21:3

the use of automatically generated abstractions, that guide the search of candidate metamorphic
relations. More precisely, our technique starts by automatically generating a finite state machine
abstraction of the SUT, known as enabledness-preserving abstraction (EPA) [13, 15]; the EPA has
abstract states that group together concrete states of the SUT in which the same methods of the
SUT are enabled (i.e., can be invoked), and transitions that correspond to SUT’s methods, and
indicate how routines of the SUT transition between the abstract enabledness-based states. The
EPA over-approximates legal method execution sequences, and is used by MEMORIA to guide a
fuzzer to effectively generate candidate “EPA-aware” metamorphic relations. Then, MEMORIA uses
run-time analysis to validate candidate properties and discard those deemed invalid, i.e., falsified
during the execution of the SUT. Finally, in order to report a concise set of metamorphic relations
better suited for inspection by developers, MEMORIA implements a SAT-based analysis to detect
and discard redundant metamorphic relations.

We implement MEMORIA and evaluate it on a dataset of 22 Java classes taken from the literature.
Our results show that EPAs can effectively guide MEMORIA to reduce the search space of candidate
metamorphic relations. We observe that on average 83% of randomly generated candidate method
sequence equivalences do not comply with the corresponding EPA, and thus are guaranteed to be
invalid (MEMORIA prevents their generation by producing only EPA-coherent candidate method
sequence equivalences). MEMORIA is also able to report compact sets of candidate metamorphic
relations: the SAT-based mechanism to identify and discard redundant metamorphic relations
allows us to reduce by 70%, on average, the number of inferred metamorphic relations.

Finally, we compare MEMORIA with the metamorphic relation inference technique SBES [21].
Our experimental evaluation shows that MEMORIA is 4.9 times faster, and produces metamorphic
relations with a good mutation killing ability, considering that metamorphic relations are inherently
weak oracles: MEMORIA detects on average 18.5% of mutants, compared to the 11% of mutants that
SBES detects on average. Interestingly, these numbers go to 59.1% and 48.7%, respectively, when
the inferred metamorphic relations are used to augment regression suites produced by EvoSuite to
cover the EPA.

2 BACKGROUND
2.1 Metamorphic Relations

Metamorphic testing [43] is a property-based testing technique whose aim is to mitigate the oracle
problem [5], i.e., the problem of effectively deciding whether the actual behavior of a software
under test is consistent with its expected behavior or not. Indeed, while the typical way of realizing
a test oracle is by running the SUT under specific inputs and comparing the actual outputs with
the expected ones, metamorphic testing proposes to provide a weaker form of test oracle via the
so-called metamorphic relations. Intuitively, a metamorphic relation (MR) is a relation capturing an
expected property of one or more sequences of invocations of the SUT [43]. For instance, a numeric
function implementing the sine function is expected to satisfy the following metamorphic relation
-sin(x) = sin(-x), for every value of x. Notice that this metamorphic oracle captures the
expected output of sin(x) in terms of another invocation to the same function, but with a different
input (sin(-x)), for any arbitrary value of x. Then, metamorphic testing can generate effective
test cases by running the function with different values for x, and using the metamorphic property
as a test oracle. It is of course also possible to define metamorphic relations that involve different
method invocations from the SUT. For instance, for the Stack implementation in the Java standard
library, it is expected that, for every non-empty stack s, calling s.pop() is equivalent to calling
s.remove (size()-1); thus, the equivalence of these two methods is an expected metamorphic
property of non-empty stacks. These kinds of metamorphic properties have various applications.

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 21. Publication date: July 2024.



21:4  A. Nolasco, F. Molina, R. Degiovanni, A. Gorla, D. Garbervetsky, M. Papadakis, S. Uchitel, N. Aguirre, and M. Frias

In particular, Carzaniga et al. [9] exploit the functional redundancy in Java components to express
metamorphic properties that capture these redundancies (as in the Stack example), and exploit
these to generate what they called cross-checking oracles.

Identifying suitable domain-specific metamorphic relations is one of the main limitations for the
application of metamorphic testing in practice [3, 43]. For the case of metamorphic relations that
describe equivalences of methods and method sequences, their identification has applications not
just in metamorphic testing, but also in other software engineering problems such as cross checking
oracle construction [9], and run-time fault recovery [10], among others. Precisely, MEMORIA focuses
on the inference of metamorphic relations that express (conditionally) equivalent method sequences,
similar to techniques such as SBES [21].

2.2 Enabledness-Preserving Abstractions

The idea of Enabledness-Preserving Abstractions (EPAs), first introduced in [16], is closely related to
the concept of object protocol. An object protocol is a restriction on the order in which the methods of
a particular object can be invoked [6]. For instance, the interface java.util.ListIterator [38]
in Java imposes a call protocol in which invocations to methods remove or set are enabled only if
preceded by successful calls to methods next or previous. Enabledness-Preserving Abstractions
are essentially behavior models that capture object protocols. They over-approximate the sequences
of successfully executing method calls, by providing a state machine behavior model whose (abstract)
states correspond to concrete object states in which exactly the same set of methods of the SUT, are
enabled. Transitions represent methods of the SUT, that transition from an EPA state S; to another
EPA state S; if and only if there exists an execution of the method from a concrete state in S;, that
leads to a state in S;.
Let us more formally introduce the notion of EPA.

DEFINITION 1 (ENABLEDNESS-PRESERVING ABSTRACTIONS). Given a class C with a set M =
my,...,my, of methods, an EPA of the object protocol of C is a finite labeled transition system
(M, S, s, 8), where:

e S is composed of the subsets of the set of methods, i.e., S = 2. Each element of S is an abstract state
of the EPA, which captures all enabledness-equivalent states of C with respect to the methods in
S: a concrete state ¢ of C belongs to the abstract state S iff there exists at least one successful (i.e.,
non-failing) execution of each method in S, from state c.

o The initial state sy represents the pseudo program states of C where the constructors of C can be
called (these are pseudo states of C, since the execution of a constructor is what leads to a proper
state of C objects).

o Tuple (S;,m,S;) belongs to § iff there exists a successful (i.e., non-failing) execution of method m
from a concrete state c that corresponds to S; (i.e., where all the methods in S; are enabled), that
terminates in a concrete state ¢’ corresponding to the abstract state S; (i.e., where all the methods in
S; are enabled).

As a specific example, consider class Stack from java.util. The labeled transition system in
Figure 1 represents the EPA of this class.

EPAs can be automatically computed from the source code of a class or component, using
different approaches, including constraint solving [14], and run-time analysis [20]. They have many
applications, including behavior validation [14] and test generation [20]. In this paper, we will
employ EPAs as a way of guiding the search for candidate metamorphic relations that capture
equivalences of method sequences. Furthermore, EPAs will also help us partition the set of candidate
metamorphic relations: as we will see later on, each candidate metamorphic relation will state an
equivalence between two sequences of method calls from a specific abstract EPA state.
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2.3 Grammar-based Fuzzing

Fuzzing is one of the most successful testing techniques, with an increasing adoption both in
research [1] and industry [22-24]. A fuzzer automatically generates values, typically in a ran-
dom way, that can be used for many purposes, specifically as program inputs for testing and
bug finding. Fuzzers can often produce thousands of inputs very efficiently, leading to effective
mechanisms for inducing program crashes (e.g., due to wrongly handled invalid inputs), finding
security vulnerabilities, and in general for bug finding [33].

Grammar-based fuzzing takes a grammar capturing the inputs language and can produce
syntactically-valid inputs by traversing the production rules of the grammar [49]. A grammar-based
fuzzer starts from a string representing the initial grammar symbol, and systematically replaces
every non-terminal symbol through the application of some production rule of the corresponding
non-terminal, usually randomly selected, until all symbols in the string are terminals. Among the
vast applications of grammar-based fuzzing, e.g., in the search for vulnerabilities [26, 34], it has
also been used for generating candidate program assertions from an assertion grammar, which are
then validated to automatically produce program specifications [35].

As we will describe in detail later on, MEMORIA will also use a grammar-based fuzzer to produce
candidate metamorphic relations, constituted by equivalences of method sequences. The grammar
will be based on the Enabledness Preserving Abstraction of the SUT, in a way that will allow
the fuzzer to produce EPA-aware method sequences, thus discarding method sequences that are
not consistent with the EPA, and that would therefore necessarily correspond to invalid method
sequencing.

3 ILLUSTRATIVE EXAMPLES

The application of metamorphic testing and other related techniques, and their corresponding
effectiveness, depend heavily on being able to identify suitable domain-specific properties of the
software under analysis. Since such identification is typically costly and non-trivial, some techniques
have been proposed, to aid with this task. One such technique is SBES [21], that aims at inferring
metamorphic relations expressing equivalent method sequences. SBES is a search-based technique,
that is able to synthesize sequences of method invocations that are equivalent to a target method,
according to a finite set of execution scenarios (test cases). Given a class C with a target method
m, SBES first executes EvoSuite [19] to generate initial test scenarios whose last executed method
is an invocation to m. Then, the process continues with two phases. The first phase generates a
new class C’ with all the methods of C but without m, and uses EvoSuite to produce sequences
of methods likely to be equivalent to m. The second phase takes the likely equivalent method
sequences, and executes EvoSuite again, this time with the goal of finding counterexamples to
the candidate equivalent sequences (i.e., executions that witness discrepancies between m and the
candidate equivalent sequence). Thus, SBES aims at inferring metamorphic relations that have a
common pattern: sequences of methods that are equivalent to the subject method m (these will
be tested on all the collected scenarios, and if passed, will be assumed to hold in all object states
where m is executable).

Let us consider, as an example, the Stack implementation [39] from the Java Standard Library,
that implements an unbounded stack data structure, with a very simple object protocol. When the
stack is empty, some methods from the class (pop (), peek()), and other methods from parent
classes that require the presence of at least one element (such as remove (E)) cannot be executed.
When the stack is not empty, all methods of the class are enabled. This causes methods such as
push(E) or the inherited addElement (E) to be enabled from any (non-null) Stack state. Figure 1
illustrates the EPA that precisely captures the object protocol of this class. Analyzing this class using
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empty() Table 1. Sample of metamorphic relations involv-
add(®) ing method Stack.pop(), inferred by SBES and

Stack(int, int)
Stack(int) ;::h(g) MEMORIA.
Stack() —
pop()
remove(int) SBES
remevalinl) pop() = peek(); removeElementAt(size() - 1)

popg pop Q)

clear( remove(size() - 1)

MEMORIA

{81} = e = push(item) ; pop()
Fig. 1. EPA of class java.util.Stack. {82} = clear() = pop();clear()

SBES allows us to find various method sequence equivalences. For instance, SBES identifies that
method pop () is equivalent to remove (size()-1) in all the collected scenarios where pop() is
executable, and thus reports this equivalence, among others. Table 1 summarizes the metamorphic
relations involving pop () that SBES produces.

Now consider a very similar example, the implementation of a bounded stack taken from [20],
and shown in Figure 2. It is relatively straightforward to see that not all the operations of class
MyBoundedStack can be executed in any object state. For instance, if the stack is full, an invocation
to the method push(Object) will throw an exception. Similarly, if the stack is empty, calling
method pop () will also throw an exception. Figure 3 illustrates the EPA that summarizes the object
protocol of MyBoundedStack. When analyzing this class with SBES, the technique is not able
to report any metamorphic relation. This is so even though we can manually spot some method
sequence equivalences (e.g., pop () being equivalent to push(x); pop(); pop() when the stack
is not full). The reason here is many-fold: SBES does not involve the subject method in the candidate
equivalent sequences (so, you cannot see pop () being involved in a candidate equivalent sequence
for pop()). Moreover, candidate sequences will be evaluated on all the collected scenarios where
the subject method is executable, without considering the enabledness of the candidate sequence
itself. For classes with more complex object protocols, since most methods involved in candidate
sequences would only be enabled in a reduced set of states, candidate sequences will more scarcely
result to be “enabled” as a whole (notice that this is even the case for MyBoundedStack, whose
object protocol is just slightly more complex than that of java.util.Stack).

Our first idea is to take advantage of the object protocol described by the EPA to produce meta-
morphic relations in the form of conditionally equivalent method sequences, conditional in the sense
that they state equivalent method sequences but only for executions starting at specific (abstract)
states in the EPA. Moreover, we can further exploit the EPA to guide the search of candidate method
sequence equivalences; intuitively, if a method sequence is not EPA-compliant, then it is guaranteed
to fail, and thus cannot participate in any metamorphic relation; similarly, if two method sequences
lead to different abstract EPA states (from a same origin), then they are guaranteed to lead to dif-
ferent concrete states, and therefore cannot be equivalent. For instance, for the MyBoundedStack
example, sequences MyBoundedStack () and MyBoundedStack () ;push(x) cannot be equivalent
from abstract state SO, as they lead to different abstract states ({S1} and {S2}, respectively). As we
will further describe later on, our technique uses the EPA to produce, using a grammar-based fuzzer,
candidate metamorphic properties that are necessarily EPA-compliant. The generated candidate
EPA-compliant metamorphic relations are validated using a run-time checking stage: test cases
are generated and executed to fest the candidate metamorphic equivalences; the non-falsified
metamorphic relations are kept, and the invalidated ones discarded. Finally, to retrieve a minimal
set of metamorphic relations, with as little redundancy as possible, MEMORIA implements a logical
satisfiability checking that allows us to discard metamorphic relations that are subsumed (logically
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public class MyBoundedStack {
private final Object[] elements;
private int index;

public MyBoundedStack() {
elements = new int[3];
index = -1;

}

public void push(Object o) {
if (isFull(Q)) throw new IllegalStateException();
elements[++index] = o;

3

public Object pop() {
if (isEmpty()) throw new IllegalStateException();
return elements[index--1];

}
public boolean isFull() { return index == elements.length - 1;}
public boolean isEmpty() { return index == -1;}
}
Fig. 2. Implementation of class MyBoundedStack.
isEmpt push(Object) )
o R SEMPO0 {S1,52,53} = € = isEnpty ()

isFull()

{S1,52,83} = € = isFull(Q)
push(Object) push(Object)

{51,52} = € = push(Object) ;pop()
{S2} = € = push(Object);isEmpty();pop ()

MyBoundedStaokO

Fig. 3. EPA of class MyBoundedStack.

pop() pop(

Fig. 4. MRs generated by MemoRIA for
MyBoundedStack.

implied) by others also being reported. This leads MEMORIA to producing more concise sets of
metamorphic relations.

Table 1 shows a sample of metamorphic relations inferred by MEMORIA for the unbounded Stack,
involving method pop (). The first states that, if the stack is empty, performing a push followed by
a pop takes back the stack to the initial state, i.e., pop reverts push (e denotes the empty method
sequence). The second states that when the stack is non-empty, then performing clear () will lead
to exactly the same object state as first doing pop () and then clear() (i.e., both sequences always
take the object to the empty stack state). Neither of these sequences would be inferred by SBES:
the first involves the empty sequence and does not follow the “subject method” pattern; the second
would be invalidated when trying to execute the candidate sequence (right-hand side sequence) if
the empty stack is one of the scenarios collected for the execution of clear(). Figure 4 also shows
a sample of the metamorphic relations that MEMORIA generates for MyBoundedStack. Notice that,
as motivated earlier, our inferred metamorphic relations are conditional: they have an antecedent
stating the relevant abstract EPA state where the equivalence applies, and a consequent where the
two sequences which are deemed to be equivalent are stated.
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push(Object)

(MR) = S1 = (EqSeqFromS1).... (So= seqy = seqy Sy = seqy = seq
@ e @ ______ . Grammar . (EqSeqFromS1) = (S151) = (s151) ... | N Grammar R S = seq; = seqa S3=...

s Generation (S181) = push; (S251) 1 isFull (S151)... Fuzzing Sy = seqy = seqy S3 = seqz = seq

Target class EPA
4

EPA-aware Grammar e g Candidate MRs . )

S1 = seq1 = seqa

EPA Generaton (e ) “ Dynamic | So = seqs = seqs  So = \ = seq;
4 Checking {81,582} = A = seq;
public class MyBoundedStack { | L Valid MRs

...... > v’z‘ Randoop .
N\ Automatic unit test a

public MyBoundedstack{ ... }
e»|  public void push(Object o) { .. }
public void pop( { ... }

({51,852} = A = 1sEapty )
R on | {81,852} = A = 1sFul10

. . >
Test Suite via SA {S1, 82} = A = push(x) ; pop

o spopl;
)

}

Target class L Reduced Set of MRs )

Fig. 5. Overview of MEMORIA.

4 THE TECHNIQUE

MEMORIA uses enabledness-preserving abstractions (EPAs), grammar-based fuzzing, run-time
checking, and SAT-based analysis, to infer metamorphic relations of Java classes. Figure 5 shows
an overview of MEMORIA’s workflow. Given a Java class C, MEMORIA first automatically computes
an enabledness-preserving abstraction EPA, describing the object protocol of C, and extracts an
EPA-aware grammar G.. This grammar is provided as input to a grammar-based fuzzer in order to
efficiently obtain candidate metamorphic relations (all compliant with the EPA, by construction).
Then, MEMORIA performs a run-time checking process in which it validates every candidate
metamorphic relation against an automatically produced test suite. The candidate relations that are
not falsified are considered valid and preserved, while the remainder (invalidated by at least one
test case) are discarded. Finally, in order to reduce the number of metamorphic relations reported
to the engineer, and to detect and discard redundant ones, MEMORIA implements a satisfiability
(SAT) based approach to approximate the minimal set of relations that subsume (logically imply)
the set of all the inferred metamorphic relations. A detailed description of each of these stages is
provided below.

4.1 EPA Generation

MEMORIA uses the tool Evo+EPA [20] to automatically compute the EPA for the target class C.
Evo+EPA is an extension of EvoSuite [19] that produces an under-approximation of the actual EPA
of a given class, using search-based dynamic analysis. It starts from an initial model with a unique
initial state, where only class constructors are enabled. When a new test is created, the test is run
and Evo+EPA checks, for each public method m, whether its precondition (a pure - no side effects -
boolean method) is satisfied on the resulting object, thus determining the states of the EPA that are
traversed during a test execution. In this way, the technique identifies the EPA source and target
states for transitions labeled with the public methods involved in test cases, with test cases being
paths in this dynamically generated EPA. The search-based test generation attempts to maximize
the coverage of the EPA. As a result, the tool generates an EPA EPA., whose states and transitions
are those covered by the generated test suite, thus under-approximating the actual EPA of class C.
The test suite that led to the construction of the EPA is also returned by the tool; we will later on
use these test suites as part of the tests used during the dynamic analysis stage, to evaluate MRs
and discard those deemed invalid.

4.2 EPA-aware Grammar Generation

Given the target class C and its EPA EPA;, MEMORIA proceeds to automatically produce a grammar
G, capturing the language of candidate MRs over C. The language, as illustrated before, corresponds
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(MR) — S1 = (EqSeqFromS1)

(EqSeqFromS1) — (5151) = (S151) || (S1S2) = (S152) || (5153) = (S1S3)

(§1S1) — push; (S2S1) || isFull; (S1S1)| isEmpty; (S1S1)|| isFull ; null || isEmpty ; null
($1S2) — push; (S2S2) | push; null || isFull; (S1S2) || isEmpty; (S5152)

(5153) — push; (S2S3) || isFull; (S1S3) || isEmpty; (SiS3)

(S252) — pop; (5152) ...

Fig. 6. Fragment of the EPA-aware Grammar for class MyBoundedStack.

to conditional equivalences of method sequences. More precisely, each candidate metamorphic
relation will have the form:

{S,’,...,Sj} = Sql = qu

where S;, ..., S; are EPA abstract states, and Sq; and Sq, are sequences of public methods of C. The
above MR schema expresses that:

for every concrete state st of an object of C, if st belongs to one of the abstract states
Siy...,Sj, then executing Sq, from st leads to the same concrete object state as executing
Sq, from st.

The grammar G, allows us to obtain only candidate metamorphic relations that are consistent with
the object protocol of C as captured by EPA,, i.e., method sequences Sq, and Sq, are reproducible
from states {S;,...,S;} in EPA, and lead to compatible sets of states in EPA. (notice that an EPA is
typically a non-deterministic labeled transition system). This stage automatically converts EPA,
into a context-free grammar (it can actually be transformed into a regular grammar) as follows. First,
it defines (MR) as the starting symbol. Then, for each pair of states (S;,S;) € S x S, it incorporates
to the grammar the following production rule:

(MR) — S; = (8:S;) = (SiS;)

where the non-terminal (S;S;) represents valid sequences of method names (the alphabet of EPA.)
that start in state S; of EPA; and can end in state S; of EPA,.

Next, for each pair of states (S;,S;) in the EPA, MEMORIA generates production rules for the
corresponding non-terminals (S;S;). That is, for each transition in § of the form (S;, m, St), the
following rule is added:

(SiSj) — m;(SkS;)

Additionally, we also incorporate the rule (S;S;) — m;null to allow for sequences that end with
method call m, where null is a special token we use to denote the end of the sequence. For instance,
considering the states S; and S; and method push in the EPA for MyBoundedStack (Figure 3), we
would add the following rules:

(S152) — push; (S2S52)
(51S2) — push; null
Notice that the production rules prevent infeasible sequences in the EPA. For instance, from the
EPA in Figure 3, the pair (S,, So) is infeasible (no method sequences allow us to get from S; to Sp)
and thus our process will have no production rules for (S,5,). Figure 6 shows a fragment of the

grammar generated for class MyBoundedStack (the full grammar for each subject is available in
our replication package site [2]).
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4.3 Fuzzing Candidate MRs

Once the grammar G, is generated, MEMORIA proceeds to generate candidate metamorphic relations.
To do so, it employs a grammar-based fuzzer that, given the grammar G, is able to produce candidate
metamorphic relations for our target class C. The fuzzer we use is a Java implementation of the
grammar-coverage fuzzer introduced in The Fuzzing Book [49]. The fuzzer produces strings of the
grammar language £(G,) by starting with the initial symbol (MR), and then by iteratively replacing
non-terminal symbols until all non-terminals have been expanded into terminals. Moreover, the
fuzzer tries to systematically cover all expansions of the grammar at least once, with the goal of
maximizing variability. It is also possible to configure the fuzzer to generate up to a given maximum
number of sequences (in our experiments we generate up to 1000 candidate metamorphic relations).
We remark that the generated candidate metamorphic relations are EPA-consistent, as the grammar
G, captures method sequences consistent with EPA..

4.4 Dynamic Checking of Candidate MRs

To determine whether generated EPA-aware candidate metamorphic relations hold for the target
class C, MEMORIA relies on dynamic analysis. In addition to the suite generated by Evo+EPA during
the EPA generation phase (that maximizes EPA coverage), MEMORIA also uses the test generation
tool Randoop [17] to generate further test cases. Both automatically generated suites are combined
and used as follows. First, MEMORIA collects a set O, of objects of class C generated by the suites.
As our candidate metamorphic relations are associated to specific abstract states of EPA., MEMORIA
first identifies, for each object 0 € O, the abstract EPA state S; it belongs to, in order to determine
which candidate MRs should be checked on which objects. MEMORIA then checks the candidate
MRs on the corresponding objects from O,, discarding those falsified by at least one object; the
surviving properties are considered valid and reported by this stage.

The specific mechanism to check a candidate MR on a given object works as follows. Let
S; = seq; = seq; be a candidate MR. Let o be an object generated by the test generation tools
(Evo+EPA or Randoop), and seq, the sequence of methods leading to object o (notice that both
tools, Evo+EPA and Randoop, save the method sequences rather than the objects). We first check if
o corresponds to S; by evaluating which of the public methods of C can be called in o. If so, we
execute method sequences seq,; seq; and seq,; seqz, and compare the corresponding concrete object
states obtained, say 0; and oy, respectively. The equality of these states (checked using equals)
determines if the MR holds for o or not.

4.5 SAT-based MR Reduction

The previous stage will result in a set MR of likely metamorphic relations for class C. As these
were generated from a fuzzer, many of the obtained relations may be redundant, in the sense that
they might be logically implied by other relations in the set. Since the reported metamorphic
relations will generally go through manual inspection by the engineer (notice that we generate
metamorphic relations that are consistent with the current behavior of the SUT according to a
sample of SUT executions, which may not coincide with the intended behavior of the SUT), it is
important to produce a compact set of metamorphic relations.

We therefore perform a reduction stage, where redundant relations are identified and removed.
Our approach takes the EPA, interprets abstract states as sets of concrete states, and methods as
uninterpreted partial functions between the corresponding EPA states. In this context, metamorphic
relations are transformed into formulas. For instance, metamorphic relation:

{81,852} = € = isEmpty )
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for MyBoundedStack is interpreted as the formula that states that function isEmpty () is contained
in the identity function (since it is a partial function), when restricted to state sets {S1, 52}. Then,
implications between these formulas are checked with a constraint solver, in order to discard
metamorphic properties implied by others. As an example, given the above metamorphic property
for MyBoundedStack, property:

{S1} = push(Object); isEmpty() = push(Object)

becomes redundant. We implemented the check for implications between metamorphic properties
in Alloy [25]. Alloy performs a SAT-based bounded exhaustive analysis of the implications.

Since reducing a set of metamorphic properties to the minimal set of properties implying the rest
is inherently combinatorial (and implication checks are costly), we proceed with a heuristic, that
favors shorter (and thus more legible) metamorphic properties. We sort the metamorphic properties
by decreasing length, and check in order, for each metamorphic property, if the others imply it. If
they do, we discard the current property (remove it from the set), and continue with the next. If
not, we keep the property.

It is worth remarking that although we only discard metamorphic properties that are logically
implied by others, we may lose bug finding ability by leaving out these “weaker” properties.
Although this is counterintuitive, this is actually the case because metamorphic properties are
not state properties, but properties of executions. In our above example, for instance, a bug in
isEmpty() that is triggered only after a push may be identified if both properties are maintained,
but not if only the stronger is. Our experimental results will provide further details in this respect.

4.6 Examples of Candidate MRs

Table 2 shows five different candidate MRs for class MyBoundedStack (cf. Figure 2), that our
approach supports. Particularly, since the first MR is not EPA-compliant (see Figure 3), MEMORIA
will not produce this property, since the EPA is integrated into the grammar for fuzzing, and only
EPA-compliant properties are generated in the first stage of our approach. The other four candidate
MRs are EPA-compliant. MEMORIA would discard the second property during dynamic analysis,
when testing the candidate property by pushing an item different from the one that is popped. The
three remaining MRs (i.e., properties 3, 4 and 5 in Table 2) are considered valid, since these are
consistent with the EPA and the dynamic analysis process did not invalidate them. Then, MEMORIA
will apply the SAT-based reduction step and discard MR 3 because it is redundant with respect
to MRs 4 and 5. Notice that, from a logical point of view, if both properties 4 and 5 are valid in
abstract states S1 and S2, then we can prove the validity of property 3 in both states S1 and S2.
This is automatically checked by using constraint solving as explained above. Finally, MEMORIA
reports the reduced set of MRs (4 and 5) to the engineer for validation and analysis.

Table 2. Sample of candidate MRs for MyBoundedStack and how they are handled by MEmoRIA.

MRs Valid? Discarded in stage
1- {S1} = e = pop() ;push(Object) No EPA
2- {52,583} = ¢ = pop() ;push(Object) No Dynamic checking
3- {51, 52} = € = push(Object) ;pop() ;isEmpty () | Yes SAT-based reduction
4- {S1,52,53} = € = isEmpty () Yes -
5- {§1,52} = € = push(Object) ;pop() Yes -
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5 RESEARCH QUESTIONS

Our first research question assesses the suitability of EPAs in discarding invalid metamorphic
relations:

RQ1 How effective are EPAs in discarding invalid metamorphic relations?

To answer this question we study to what extent invalid metamorphic relations are non-conforming
with the EPAs. We produce random conditional method sequence equivalences, and then execute
our dynamic checking step to determine which of these are invalid. For each metamorphic relation
deemed invalid, we check if it complies or not with the corresponding EPA, since we are interested
in analyzing the impact of EPAs in discarding invalid candidate properties, prior to the dynamic
analysis.

Our second research question analyzes the effect of MEMORIA’s SAT-based approach in reducing
the set of reported metamorphic relations:

RQ2 How effective is the SAT-based reduction in eliminating redundant metamorphic relations?

We assess effectiveness on two aspects. First, we examine the level of reduction achieved, i.e., the
ratio between overall inferred valid relations, and those identified as redundant by the SAT-based
approach. Second, we compare the effectiveness of the reduced set of valid metamorphic relations
with respect to the entire set of inferred valid relations. Effectiveness is measured in terms of the
ability of detecting artificially seeded faults (mutants).

Finally, we compare the performance of MEMORIA with related approaches:

RQ3 How does MEMORIA compare with alternative techniques?

To answer this question we compare MEMORIA with SBES [21], to the best of our knowledge,
the only other technique that uses dynamic analysis for synthesizing metamorphic relations. We
compare MEMORIA against SBES according to various metrics: execution time, number of reported
properties, and effectiveness of the inferred relations for detecting mutants when used as test
oracles during metamorphic testing.

6 EXPERIMENTAL SETUP
6.1 Subjects

For RQ1, we use the subjects taken from a recent object protocol benchmark [20], comprising 15
Java classes (with up to 24 methods) for which the corresponding EPAs are publicly available [18].
Table 3 reports, for each subject, the number of public methods (#M), the size of the EPA in terms
of numbers of states (#S) and transitions (#5). All these EPAs were automatically obtained using
the Evo+EPA tool [20]. For RQ2 and RQ3 we also incorporate the subjects used in the evaluation
of SBES [21]. These subjects include 7 classes: the Stack implementation from the Java Standard
Library (our motivating example) and 6 other classes from the graphstream [46], a Java library
for the modeling and analysis of dynamic graphs. Overall, we evaluate MEMORIA in a total of 22
Java classes, containing a total of 160 methods. All these subjects as well as their corresponding
EPAs can be found in our replication package [2].

6.2 Experimental procedure

To answer RQ1, we start by randomly generating 1000 candidate equivalent method sequences
(ignoring the EPA) and building conditional MRs pairing them with every EPA state precondition.
This leads to a total of 1000 * #S (number of EPA states) candidate metamorphic relations, that are
later on evaluated with our dynamic checking procedure (cf. Section 4.4). As a result, we obtain
sets V and 7 of valid and invalid metamorphic relations (valid/invalid with respect to the dynamic
analysis), respectively. We analyze 7 to determine which of the invalid MRs would have been
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discarded due to not being consistent with the corresponding EPA; the result is the set D of EPA
discarded MRs. Using this information, we measure the recall, i.e., the proportion of invalid relations
(relations that are invalidated by the dynamic analysis) that are discarded by the EPA. To account
for the randomness involved in the process, we repeated the experiment 10 times, and report the
average recall.

For the remaining RQs, we infer MRs with three techniques:

MEemoRIA(all). This technique is essentially MEMORIA without the SAT-based reduction. That
is, this technique generates the EPA and the EPA-aware grammar, fuzzes candidate metamorphic
relations, and filters them out using dynamic analysis. We fuzzed 1000 candidate MRs per subject,
and set Randoop to produce a maximum of 2000 tests per subject.

MEeMORIA(sat). This technique corresponds to the full MEMORIA approach. It employs exactly the
same stages described in the previous technique, and then applies the SAT-based reduction on the
produced valid MRs. The fuzzing and dynamic checking processes are performed with the same
configuration as MEMORIA(all).

SBES. The Search-based Equivalent Sequences approach [21] synthesizes, from a target method,
equivalent method sequences. We execute SBES on every public method of each subject class,
using the same configuration for SBES used in [21]: 180 seconds for each of the two phases, and 30
executions (repetitions) for each method under analysis.

After executing each technique, we generate mutants with Major [28] and then analyze whether
the set of MRs inferred by each of the techniques are able to detect the mutants, which represent
seeded faults.

To answer RQ2, we focus on the output of the MEMORIA(all) and MEMORIA(sat) techniques. We
study the overhead of using the SAT-based analysis, the reduction achieved in terms of the number
of discarded MRs, as well as how the mutation score is affected by the SAT-based reduction.

Finally, to answer RQ3, we compare MEMORIA with SBES in terms of execution time, number of
inferred properties, and the mutation score achieved. We also analyze to what extent the inferred
MRs can complement the fault detection capabilities of the regression suites produced by Evo+EPA,
which adapts EvoSuite to generate test suites and regression assertions covering the corresponding
EPA.

As in RQ1, the execution of MEMORIA as well as the mutation analysis were repeated 10 times
to cope with the stochastic nature of the process.

7 EXPERIMENTAL RESULTS
7.1 (RQ1) EPAs for discarding invalid MRs

Table 3 shows how effective EPAs are in discarding invalid MRs. We produce a total of 37,594
invalid MRs (across all subjects), of which 89% (33,674) do not comply with the EPA. On average
per subject, 83% of the invalid MRs were also invalid with respect to the EPA. Furthermore, we
observe that every MR invalidated by the EPA is actually invalid, i.e., there is no metamorphic
property violating the EPA that is valid in the class under analysis. This result indicates that a prior
EPA-awareness analysis can considerably reduce the cost of the dynamic analysis employed by MR
inference techniques. In fact, this is what motivated the design of our mechanism for candidate
generation: producing a grammar capturing the language of EPA-compliant method sequences, and
then fuzzing from that grammar. It is worth remarking that non EPA-compliant candidate relations
are necessarily invalid (confirmed by the precision in our experiments), implying that EPAs do not
miss valid MRs.
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Table 3. Ratio of EPA detected Invalid MRs. It reports number of public methods (#M), EPA size (number of
states #S and transitions #8), and number of invalid () MRs discarded by the EPA (D).

. EPA MRs
Subject MIus 5| 4T #D Rec. (%)
JDBCResultSet 24 9 127 6,185 5,939 96
Listltr 9 8 65 3,861 3,520 91
MyBoundedStack 4| 4 13| 1,358 1,095 81
NumberFormatStringTokenizer 4| 4 13| 1,371 1,035 76
NumberFormatStringTokenizer m 4| 3 9 998 719 72
SMTPProcessor 7 5 20| 2337 2226 95
SMTPProcessor_h 9112 85 6,119 5,801 95
SMTPProtocol 9 3 18 1,786 1,433 80
SftpConnection 20 5 29| 2944 2,790 94
Signature 10 4 20 2,013 1,879 93
Socket 7 7 20 3,780 3,752 99
StackAr 6 3 14 1,248 807 65
StringTokenizer 3 3 12 1,201 799 67
ToHTMLStream 7 2 8 932 474 51
ZipOutputStream 4 4 9| 1,462 1,406 96
Total 127 ‘ 76 462 | 37,594 33,674 89

7.2 (RQ2) Effectiveness of the SAT-based reduction

Table 4 shows the results of performing MR inference with MEMORIA, with SAT-based reduction
enabled and disabled, and starting from 1000 candidate MRs per subject. MEMORIA ran successfully
on all the subjects from [21], except for MultiNode, for which Evo+EPA failed to produce an output.
Below we discuss the results according to each metric we used for comparison.

Time. The SAT-based reduction has a relatively low negative impact on the execution time for the
majority of the subjects. In 4 cases the execution time increases significantly, but still remains in the
order of few seconds up to 9 minutes per subject. We have only one outlier for which MEMORIA(sat)
causes an increase of one to two orders of magnitude in the execution time: ListItr. This is one
of the subjects with the highest number of transitions in the model (see Table 3), which in some
cases can affect the performance of the SAT-based analysis. Overall, considering all subjects, the
SAT-based analysis adds a total of 10,470 seconds. Even considering this time increase, our full
approach is still much more efficient than SBES (see Section 7.3).

Inferred MRs. In most subjects, applying the reduction allows us to go from hundreds of MRs to
just a few dozens. We obtain no more than 53 MRs (13 on average) per subject, after applying the
SAT-based reduction. Our reduction mechanism achieves on average a reduction of approximately
70%. This is significant, taking into account that the automatically inferred MRs are devised to
be an input for the engineer, who will examine these to confirm that they capture the intended
behavior of the software under analysis.

To assess the precision of MEMORIA in inferring MRs, we analyze the false positive rate, i.e.,
the ratio of inferred MRs that are in fact invalid, with respect to the total number of inferred MRs.
We do so by resorting to our SAT-based property reduction. More precisely, we manually inspect
the MRs generated by MEMORIA(sat), identify and remove the invalid properties in the reduced
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Table 4. Comparison of metamorphic relations inference between MemoRIA(all) —our approach without
including the SAT-based reduction—, MEMORIA(sat) — our approach with the SAT-based reduction enabled-
and the SBES technique.

Time (sec.) Inferred (¥) Mutation Score (%)

Subject MEMoORIA MEeMoORIA MEeMoORIA
@ll) (sat) SBES | (all) (sat) SPE | (all) (sat) SDEO
MyBoundedStack 39 541 945 | 217 9 0| 588 58.8 0
Listltr 47 8,120 1,750 | 104 53 3| 485 48.2 0
JDBCResultSet 14 434 - 72 23 - 7.6 5.7 -
NmbrFStrngTknzr 12 47 1,070 | 151 5 11333 167 0
NmbrFStrngTknzr_m 12 37 - 211 5 -| 41.8 313 -
SMTPProcessor 12 140 - 85 17 - 228 21.2 -
SMTPProcessor_h 11 458 - 15 11 -1 249 23.0 -
SMTPProtocol 13 13 - 3 2 - 74 74 -
SftpConnection 24 30 2,952 26 7 0 4.1 4.1 0
Signature 48 106 - 172 14 -1 219 21.0 -
Socket 9 60 - 73 4 -| 104 8.6 -
StackAr 138 154 1,853 | 145 13 2| 668 64.7 0
StringTokenizer 9 10 662 17 1 0| 69 6.9 0
ToHTMLStream 13 13 - 16 2 - 1.6 1.3 -
ZipOutputStream 12 21 - 73 2 - 41 1.6 -
Stack 47 61 7,080 | 129 41 41 | 18.0 16.7 50.1
SingleNode 14 14 2,400 0 0 12 0.4 0.4 0.4
MultiNode 14 14 2,475 0 0 12 0 0 0.4
Edge 638 695 6,309 | 249 41 20 1.3 1.3 0.8
Path 12 545 1,657 90 22 5 4.9 4.4 2.5
Vector2 11 12 2,121 32 9 21| 129 127 54.2
Vector3 12 14 2,416 44 11 22 9.6 9.5 34.9

set. We then proceed to remove these identified invalid properties from the set of all inferred MRs
(obtained by MEMORIA(all)), and apply again the SAT-based reduction. We repeat this process until
no more false positives are identified. Each discarded MR was manually inspected by two authors,
and a third author was involved in case of disagreement, in order to arrive to a decision on the
validity or invalidity of an inferred MR.

Notably, MEMORIA produced false positives only for the StackAr case. An average of 19 MRs
were identified as false positives across the 10 executions, which represent a 13% of the total inferred
MRs (145). False positives arise due to the inherent partiality of the generated test suites, leading
to invalid properties that no test in the test suite is able to invalidate. For instance, one of the
inferred false positives is property topAndPop()* = makeEmpty (), stating that four consecutive
invocations of method topAndPop () (which sequentially performs top () and pop (), and returns
null if the stack is empty) is equivalent to makeEmpty (). To invalidate this MR, our dynamic
analysis process would need to generate a stack with 5 or more elements, which was not the case
in our experiments.

After our manual analysis, and in order to mitigate the threat of missing some false positives,
we executed Randoop to generate up to 10,000 tests, and checked whether the inferred MRs were
falsified or not. In this process, we were not able to detect any additional false positives.
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Mutation Score. Even though the SAT-based reduction eliminates in principle only logically re-
dundant MRs, the bug finding ability of all MRs may be greater than that of the reduced set. We
compare the corresponding mutation scores, and the results are shown in Table 4 (see columns
MemoRIA(all) and MEMORIA(sat)). For 19 of the subjects, the mutation score achieved with the
MEMORIA(sat) MRs is similar to the score achieved by MEMORIA(all), with 6 of them maintaining
exactly the same score.

For other cases, such as NumberFormatStringTokenizer, the mutation score is greatly affected.
A manual analysis confirmed that the main reason for this is the bound that was used in the SAT-
based analysis with Alloy, which marks some MRs as redundant while they are not. Extending
the bound in the analysis can improve the results in these cases. Overall, the MEMORIA(all) MRs
achieve an average mutation score of 18.5%, while MEMORIA(sat) obtains 16.6%.

7.3 (RQ3) Comparison with SBES

Table 4 shows how MEMORIA compares to SBES [21], in terms of execution time, number of inferred
MRs, and performance in terms of mutant killing ability, when using MRs as test oracles. MEMORIA
ran successfully on all subjects except for MultiNode, while SBES failed on 9 subjects from [20]
(these cases are indicated with “-” in the table). The SBES failures are all due to the tool not being
able to properly handle some exceptions that the subjects throw at run-time (the stubs generated by
the tool did not compile). As mentioned earlier, MEMORIA failed on MultiNode because Evo+EPA
was unable to generate an EPA for this case.

Time. MEMORIA is more efficient than SBES in most of the subjects. For the subjects in which both
tools could be run, SBES took 2 to 3 orders of magnitude more time to complete the analysis. We can
thus conclude that even with the SAT-based reduction, MEMORIA in general performs significantly
better than the search-based approach implemented in SBES.

Inferred MRs. SBES failed to run on various of the subjects not included in its original dataset, and
it identified 6 MRs in total in ListItr, NumberFormatStringTokenizer and StackAr. However,
a manual analysis of these MRs confirmed that they are all false positives, i.e., the properties hold in
a few executions but are not valid in the general case. An example of this is in the StackAr subject,
where SBES suggests isFull() and isEmpty () as possibly equivalent methods. This property
clearly holds only when the Stack has elements and is not full, but not in the general case. When
comparing the inferred MRs in the subjects for which both tools ran successfully, the techniques
generate complementary MRs.

Mutation score. When using the MRs inferred by SBES as test oracles, we detected mutants for
7 subjects out of the 13 supported by the tool. When using the MRs inferred by MEMORIA, we
detected at least one mutant for 20 out of the 21 supported subjects. Thus, the MRs inferred by
MEMORIA have better mutant killing ability, on the analyzed subjects. On average, SBES MRs
achieved a mutation score of 11%, while MEMORIA achieved 16.6% and 18.5%, with and without the
SAT-based reduction, respectively.

We also analyzed the impact of the inferred MRs, when used to augment regression assertions,
in fault detection, via mutation analysis. Table 5 shows, for each subject, the improvement achieved
when incorporating the MRs inferred by SBES and MEMORIA to the regression assertions generated
from Evo+EPA. Fig. 7 summarizes these results.

On the one hand, the MRs inferred by SBES allowed us to improve the mutation score of regression
assertions in only one case, namely Vector3. Coincidentally, this is also the only case in which
SBES outperforms MEMORIA. On the other hand, the MRs from MEMORIA improved the mutation
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Table 5. Mutation score improvement achieved when incorporating the MRs.

Subject Evo+EPA +SBES +MemoORIA(all) +MEemMORIA(sat)
MyBoundedStack 52.9 52.9 70.6 70.6
ListItr 86.2 86.2 86.2 86.2
JDBCResultSet 46.0 46.0 46.7 46.7
NmbrFStrngTknzr 80.9 80.9 85.7 85.7
NmbrFStrngTknzr_m 50.7 50.7 76.1 76.1
SMTPProcessor 28.4 28.4 28.4 28.4
SMTPProcessor_h 19.5 19.5 30.5 29.1
SMTPProtocol 34.2 34.2 38.8 38.8
SftpConnection 99.6 99.6 99.6 99.6
Signature 74.0 74.0 74.0 74.0
Socket 100.0 100.0 100.0 100.0
StackAr 94.1 94.1 94.1 94.1
StringTokenizer 46.7 46.7 47.7 47.7
ToHTMLStream 8.6 8.6 9.2 9.2
ZipOutputStream 23.6 23.6 244 239
Stack 99.5 99.5 99.8 99.8
SingleNode 1.9 1.9 2.0 2.0
MultiNode 5.7 5.7 5.7 5.7
Edge 0.8 0.8 1.3 1.3
Path 6.6 6.6 7.4 6.8
Vector2 97.0 97.0 97.0 97.0
Vector3 92.4 94.3 92.4 92.4

score of regression assertions in 13 out of the 22 analyzed subjects, with a significant improvement
in some subjects such as MyBoundedStack and NumberFormatStringTokenizer_m.

The regression assertions obtained with Evo+EPA already have a good mutation score, with a
median value of 48.7%. When SBES MRs are added, the improvement does not affect the median.
On the other hand, when using the MRs inferred by MEMORIA, the median is increased to 59.1%
with and without the SAT-based reduction. Overall, these results show that the MRs inferred by
MEMORIA can complement the regression assertions generated by Evo+EPA and considerably
improve their fault detection capabilities.

8 DISCUSSION

In this section, we will discuss some important aspects of our technique, and specifically of the
MRs inferred by MEMORIA.

EPA Reliability. EPAs play a crucial role in the generation of candidate MRs by MEMORIA. Given a
target class, MEMORIA employs the Evo+EPA tool to generate the EPA. Evo+EPA uses dynamic
analysis to generate an under-approximation of the actual EPA. This under-approximation may
not accurately capture the protocol of the class, in the sense that it may be more permissive in
the allowed sequencing of methods (i.e., the class protocol) than the actual class. Thus, it may
allow for the generation of candidate MRs that do not actually satisfy the protocol of the class, and
therefore will necessarily be falsified during the dynamic checking stage of our technique. That
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Fig. 7. Mutation score achieved by Evo+EPA regression assertions, and the increase obtained when adding
MRs inferred by different techniques.

is, in the presence of an inaccurate EPA, protocol-invalid candidate MRs would be produced, thus
reducing the pruning before dynamic checking, and contributing to higher computational costs. An
under-approximated EPA, however, cannot reject valid MRs during generation. More precisely, the
EPA cannot “leave out” during generation MRs that would “pass” the dynamic checking, assuming
that we test these MRs on at least one scenario.

Expressiveness. To a great extent, the ability of MEMORIA in finding useful MRs or MRs that
are capable of detecting faults depends on the expressiveness of the MRs language. MEMORIA
concentrates on a very particular kind of metamorphic properties: conditional method sequence
equivalences. These MRs are suitable for stateful classes, i.e., classes that capture non-trivial
object protocols, but may be inadequate or ineffective for other subjects. Our supported pattern of
conditional method sequence equivalences has its specific limitations too; in particular, it disregards
specific method parameters and conditions on these. Thus, for instance, the java.util.Stack
valid MR:
{52} = pop() = remove(size()-1)

which states that performing the pop operation is equivalent to removing the last element, cannot
currently be inferred by MemoRIA.

The above observation implies that, compared to manually written MRs, where one is not
constrained by a specific MR language or pattern, MEMORIA is inherently less expressive. Also, the
expressiveness of our approach can be enhanced by extending and/or adapting the language of
candidate MRs, to support other properties of interest.

Soundness. Another relevant aspect is the soundness of the inferred MRs. Regarding this, it is
important to remark that MEMORIA infers MRs solely from a program’s actual (i.e., implemented)
behavior, and thus these may not be sound in the sense of capturing the intended program behavior.
This is an issue common to all specification inference techniques that only consider the subject’s
implementation as input (e.g., [17, 21, 3537, 45, 47]). In general, two kinds of incorrect MRs may
arise from MEMORIA’s inference process: false positives, i.e., relations that are incorrect but are
consistent with the tests the program is assessed on; and relations that, due to bugs in the program,
are consistent with the program but do not correspond to the intended behavior. In our experiments
we analyzed the ratio of incorrect MRs produced by MEMORIA by manually inspecting the produced
MRs to identify false positives, and we found that all false positives belonged to the same subject
(StackAr), where 13% of the inferred MRs were incorrect (see Section 7.2).
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Applications. Although we did not assess our technique in the context of some downstream analysis
task, it is worth mentioning that tools like MEMORIA, that produce specifications from the program
behavior, typically require engineers to manually inspect the inferred assertions (MRs in our case),
and discard the invalid ones before applying the resulting specification for a certain analysis task.
This manual inspection makes compactness of the inferred specifications critical, which motivates
our reduction strategy.

A direct use of MRs inferred by MEMORIA from the subject’s implementation is for regression
and differential testing. In this scenario, MRs are inferred from a reference implementation (e.g., a
functionally acceptable, but suboptimal and/or legacy, implementation), and are then contrasted
with future or alternative implementations, in the search of regression or differential bugs. Inferred
MRs can support the validation of an implementation too, by allowing a developer to inspect the
inferred relations in order to identify reported relations that should not hold, as well as missing
relations that are expected to hold.

MRs (and specifications in general) inferred from implementations have many more applications,
including fault localization, automated program repair, patch correctness assessment, program
comprehension, and as an aid for program verification, among many others [29-31, 40, 41].

9 THREATS AND LIMITATIONS

An important threat to validity is the applicability of MEMORIA to subjects beyond our dataset.
We explored the use of MEMORIA, especially in relation to implementation limitations in the EPA
generation and the dynamic analysis stages. We inspected more than 200 classes from Defects4] [27],
discarding classes with complex dependencies and with inheritance (Evo+EPA does not support
them). Out of these, 60 were concrete stateful classes, from which, in principle, an EPA may be
computed. In 22 of these, Evo+EPA failed to generate the EPA and/or Randoop was not able to
generate tests. We were thus able to run MEMORIA on 38 classes, discovering MRs for 12 classes
from projects cli, codec, compress, lang, math, time, collections and jacksoncore, all
from Apache Commons [4]. This provides evidence of the potential increase in the applicability of
MEMORIA, through the improvement (or replacement) of some of its components (further details
can be found in [2]).

Our comparison was limited to SBES [21], and in particular did not consider the more recent
MeMo [8] approach. MeMo requires as input subjects that have appropriate Javadoc comments.
None of the subjects from [20] have comments that follow the patterns supported by MeMo, and
therefore MeMo cannot be run on these cases. For the subjects from SBES, MeMo achieves around
a 10% increase in mutation killing with respect to regression assertions, a similar improvement
compared to the one obtained by MEMORIA in our experiments (over a different dataset, see Fig. 7).
Overall, the techniques are complementary in applicability (one requires comments, the other
classes with object protocols), and they have comparable effectiveness, in their corresponding
domains.

10 RELATED WORK

The oracle problem [5] has received significant attention by the software engineering research
community. A great progress on automated inference of software specifications has been done
recently, including techniques based on dynamic analysis [17, 45], evolutionary computation [37, 47],
fuzzing [35], natural language processing [7], and machine learning [36]. These approaches typically
execute a test suite of the SUT, observe executions, and infer specifications that are consistent with
the observations. MEMORIA differs from these approaches in two aspects. Firstly, these approaches
are typically white-box, while MEMORIA is a black-box technique that infers properties in terms of
the AP, through an abstraction of the SUT (the EPA). Secondly, these approaches infer executable
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assertions for specific program points, such as pre- and post-conditions, that should hold in every
single SUT execution; MEMORIA infers metamorphic properties, a weaker but effective kind of
oracle, that applies to a large family of executions at once.

A key issue in applying metamorphic testing is the identification of suitable domain-specific
metamorphic relations [3, 43]. Carzaniga et al. [9] proposed a variety of user-defined relations,
general enough to be applied in many contexts, but ineffective in finding software specific bugs. A
recent approach, MeMo [8], aims at gathering likely metamorphic relations from code comments.
Though very efficient, its application is limited to mature and well documented software.

Goffi et al. [21] proposed SBES, a dynamic approach that implements a search algorithm that
tries to find different method sequences that have the same run-time effect as a given method. SBES
is inefficient since it needs to analyze many combinations of SUT methods until it identifies some
potential metamorphic relation. As opposed to SBES, MEMORIA discards, prior to any test execution,
many invalid candidate metamorphic properties not conforming with the protocol exhibited by the
EPA, helping the approach to achieve efficiency. Our experiments confirmed that MEMORIA is more
effective and efficient than SBES. At the same time, MEMORIA is limited to some specific properties,
conditional method sequence equivalences, and thus it does not support some properties that SBES
is able to infer.

11 CONCLUSION

Metamorphic testing is an effective technique that allows us to mitigate the oracle problem. How-
ever, the effectiveness of metamorphic testing largely depends on the identification of suitable
domain-specific metamorphic relations. This issue has been acknowledged by various researchers,
and there currently exist techniques to automatically detect metamorphic relations. However,
these either require specific software elements (such as comments) or are expensive due to the
combinations of the SUT executions they need analyze. To better deal with the automated discovery
of metamorphic relations, we introduced MEMORIA, an approach that automatically generates
metamorphic relations that describe the current behavior of a software under analysis in the form
of conditional equivalences of method sequence invocations. MEMORIA’s approach is based on the
use of enabledness-preserving abstractions (EPAs), grammar-based fuzzing, run-time checking and
SAT-based analysis. Our experimental evaluation shows that MEMORIA is more efficient compared
with the state-of-the-art SBES, and that the obtained metamorphic relations have better fault
detection capabilities when used as test oracles, both on their own and when used to complement
regression assertions.

DATA AVAILABILITY

All the scripts and data to reproduce our experiments can be found in our replication package [2].
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