
Enabling Efficient Assertion Inference

Aayush Garg∗, Renzo Degiovanni∗, Facundo Molina†, Maxime Cordy∗
Nazareno Aguirre‡, Mike Papadakis∗ and Yves Le Traon∗

∗University of Luxembourg, Luxembourg
†IMDEA Software Institute, Spain

‡University of Rı́o Cuarto and CONICET, Argentina

aayush.garg@uni.lu, renzo.degiovanni@uni.lu, facundo.molina@imdea.org, maxime.cordy@uni.lu,

naguirre@dc.exa.unrc.edu.ar, michail.papadakis@uni.lu, yves.letraon@uni.lu

Abstract—Assertion inference techniques aim at automatically
inferring sets of program assertions that capture the exhibited
software behavior, often by generating and filtering assertions
through dynamic test executions and mutation testing. Although
powerful, such techniques are computationally expensive due to
the large number of mutants that require execution. In this
study, we introduce the notion of Assertion Inferring Mutants,
and demonstrate that these mutants are sufficient for assertion
inference and correspond to a small subset (12.95%) of the
entire mutant set. Moreover, these mutants are significantly
different (71.59%) from Subsuming Mutants that are frequently
cited by mutation testing literature. We also show that Assertion
Inferring Mutants can be statically approximated via a learning-
based method. Given the widespread adoption of encoder-decoder
architecture for prediction tasks, we demonstrate that it predicts
Assertion Inferring Mutants with 0.79 Precision and 0.49 Recall.
Its evaluation on 46 projects showcases that it enables a compa-
rable inference capability (missing only 12.49% assertions) with
a complete mutation analysis, while significantly reducing the
execution cost (achieving 46.29 times faster inference). Moreover,
it enables assertion inference techniques to scale on subjects
where complete mutation testing is prohibitively expensive and
other mutant selection strategies do not lead to an acceptable
assertion inference.

I. INTRODUCTION

Software specifications aim at describing the software’s

intended behavior, and can be used to distinguish correct

from incorrect software behaviors. While these are typically

described informally (e.g., via API documentation), speci-

fications become significantly more useful when expressed

formally as executable constraints/specifications. Executable

specifications are typically expressed as code/program asser-

tions for various program points, such as method preconditions

and postconditions, that must hold true at the correspond-

ing program points during execution. Program assertions are

known to be useful in many software engineering tasks, e.g.,

test generation [15], [51], bug finding [33], [40] and automated

debugging [16], [34], [44]. However, they are tedious to write

and maintain, and as a result developers often elude providing

them [8], [55].

To address this issue, different techniques that automatically

infer assertions for specific program points have been pro-

posed [37], [38], [50]. These techniques generate candidate

assertions, and use dynamic test executions to determine

which assertions are consistent with the behavior exhibited

by a provided test suite, and mutation testing to discard

ineffective/weak assertions that are unable to detect artificially

seeded faults (mutants), i.e., assertions that are never falsified

during mutants’ execution. Though powerful, these techniques

are computationally expensive due to the large number of

assertions to analyze, and the large numbers of tests and

mutants that have to be executed. The problem is further

escalated when working with large programs, as the number

of mutants grows proportionally to the program size. For

instance, the state of the art technique SpecFuzzer [37] times

out (requires more than 90 minutes to run) in programs with

180 lines of code.

To reduce the computational demands, it is imperative to

limit the number of mutants involved (fewer mutants result in

fewer executions). Interestingly, we find that the majority of

the mutants used by the existing assertion inference techniques

are redundant. This implies that discarding these mutants

does not impact the quality of inferred assertions. We thus

introduce the notion of Assertion Inferring Mutants, the subset

of mutants produced by a mutation testing tool that is sufficient

to effectively identify relevant candidate assertions (i.e., the

assertions that fail at least once on mutants).

We demonstrate that Assertion Inferring Mutants represent

12.95% of the mutants generated by Major [28] (the mutation

testing tool employed in previous studies), allowing for drastic

assertion inference overhead reductions. At the same time,

Assertion Inferring Mutants are significantly different from

Subsuming Mutants (which have been studied in the literature

[23], [42] and have been shown to improve efficiency) with

71.59% of Assertion Inferring Mutants not being subsuming.

This implies that subsuming mutant selection techniques are

ineffective for assertion inference, as they would miss many

assertions (48.53% assertions missed, according to our results).

Thus, we explore learning-based approach to statically

identify Assertion Inferring Mutants given their contextual

information. In particular, given the widespread adoption of

encoder-decoder architecture [29] that has been established to

accomplish many software engineering tasks [5], [21]–[23],

[49], [54], we employ it to learn the associations between

mutants and their surrounding code with respect to the as-

sertion inference task. This implies that our learning scope

is the area around the mutation point that locally identifies

the mutants that are most likely to be useful for assertion

inference. We follow the architecture design proposed by the

623

2023 IEEE 34th International Symposium on Software Reliability Engineering (ISSRE)

2332-6549/23/$31.00 ©2023 IEEE
DOI 10.1109/ISSRE59848.2023.00039

previous studies and refer to it as Seeker1 throughout this

paper. It operates at the lexical level, with a simple code

pre-processing that represents mutants and their surrounding

code as vectors of tokens with all user-defined identifiers

(e.g., variable names) replaced by predefined and predictable

identifier names. This representation allows us to restrict the

learning scope to a relatively small number of tokens around

the mutation points enabling inter-project predictions. We

train the encoder-decoder architecture on code fragments and

extract code embeddings. These embeddings are learned with

corresponding labels using a classifier [9] to enable prediction.

We evaluate Seeker’s ability to predict Assertion Inferring
Mutants on a set of 46 programs, composed of 40 programs

taken from previous studies [37], [38], [50] and 6 large

Maven projects taken from GitHub, to evaluate scalability. Our

results demonstrate that Seeker can statically select Assertion
Inferring Mutants with 0.79 Precision and 0.49 Recall, overall

yielding 0.58 MCC2.

Surprisingly, by performing assertion inference based only

on Seeker’s predicted mutants (instead of all mutants), we

reduce assertion inference time (wall clock) by 46.29 times

with only 12.49% assertion missed. Additionally, when com-

paring with randomly selected sets of mutants (same number

as those selected by Seeker), we observe a clear advantage of

Seeker in terms of effectiveness, i.e., Seeker enables inference

of 36% more assertions while consuming an approximately

equal amount of execution time as Random Mutant Selection.

More importantly, since Seeker selects a few mutants, it

enables assertion inference technique SpecFuzzer to scale by

allowing its operation on our considered 6 real-world subjects,

where a complete mutation testing is prohibitively expensive.

In half of these subjects, Random Mutant Selection does not

lead to any assertion inference and is subsumed by Seeker in

the other half of the subjects.

II. BACKGROUND & RELATED WORK

A. Specification Inference

Software specifications are descriptions of the intended be-

havior of software. They are crucial for determining if software

behavior is correct. The provision of software specifications is

strongly related to the oracle problem, i.e., the problem, in

the context of software testing, of determining whether the

results of program executions are coherent with the desired

behavior of the program [7]. Though specifications are typ-

ically expressed informally (e.g., via API documentations),

when these are expressed more formally as a set of executable

constraints/assertions, they have powerful applications in many

software engineering tasks such as software design [36],

software testing [4], [19], and verification [14], [20].

1The name Seeker comes from a seeker’s role to search for and catch the
Golden Snitch, in the fictional sport of Quidditch invented by the author J.K.
Rowling for her fantasy book series Harry Potter [46]. In the context of our
study, Seeker searches for (seeks) Assertion Inferring Mutants.

2Matthews Correlation Coefficient (MCC) [56] is a reliable metric of the
quality of prediction models [47], relevant when the classes are of different
sizes, e.g., 12.95% Assertion Inferring Mutants in total (in comparison to
87.05% low utility mutants), for subjects in our dataset.

 
 
// Compute the minimum
// of two values
int min(int x, int y){
 int ret;
 if (x <= y)
 ret = x;
 else
 ret = y;
 return ret;
}

Test executions

Input program Candidate Assertions

AAA1AA1:(ret>=x & ret<=y)
AAA2
11 (ret x & ret y)y:

AAA22:(ret<=x & ret<=y)
AAA3

y
AAA33: (ret<=x & ret<=y  (r(ret<=et< x & x &
 & ret!=y)
AAAA4

& ret! yy)
AAA4:(ret<=x & ret<=y & (re(ret<=x & r& ret<=y &y &
 (ret==x || ret==y))

.

Assertion
Generation

1

Dynamic
Assertion
Checking

2

Mutation
based

Filtering

3

AAAAA0AAA00:(ret<=x)

Non-Falsified Assertions

.

// Compute the minimum
// of two values
int min(int x, int y){
 int ret;
 if (x == y)
 ret = x;
 else
 ret = y;
 return ret;
}

///
///
iinnnnntt

ii
ii

ee

}}

// Compute the minimum
// of two values
int min(int x, int y){
 int ret;
 if (x == y)
 ret = x;
 else
 ret = y;
 return ret;
}

////
////
iinnnntt
i
i

ee

}

// Compute the minimum
// of two values
int min(int x, int y){
 int ret;
 if (x == y)
 ret = x;
 else
 ret = y;
 return ret;
}

// Compute ComputeCompute th i ithe minimthe minimumum
/
nnntttt
iiiii
iiiii

eeeee

rrrr

// Compute the minimum
// of two values
int min(int x, int y){
 int ret;
 if (x == y)
 ret = x;
 else
 ret = y;
 return ret;
}

/// Compute/ / Compute/ / Compute/ / ComputeCCompute Computep th i ithe minimthe minimthe minimthe minimthe minimumumumumum
////// of twoof two / lvalues
iiiinnnntttt min(int x, int y){
 iiiiiint ret;
iiiiiif (x == yy) y
 ret = x;
 eeeeeelse
 ret = yy; ;
 rrrrreturn ret;;

}}

// Compute the minimum
// of two values
int min(int x, int y){
 int ret;
 if (x == y)
 ret = x;
 else
 ret = y;
 return ret;
}

Mutants

Inferred Assertions

.

AA (ret>=x & ret<=y):A1:
AAA2

(ret x & ret y):1:
AAA22:(ret<=x & ret<=y)
AAA (ret<=x & ret<=y ::A3: (ret<=x &
 & ret!=y)& t!)
AAAA4

y& ret! y)
AAA44:(ret<=x & ret<=y & (re(ret<=xt< x & r& ret<=et< y &y &
 (ret==x || ret==y))

AAAAA0AAA00:(ret<=x)

AA (ret>=x & ret<=y):A1: y
AA (ret<=x & ret<=y):A2:
AAA (ret<=x & ret<=y ::A3: (ret<=x &
 & ret!=y)& ret! y)
AAAAA4

& ret! y)
AAA44:(ret<=x & ret<=y & :(re(ret<=xt<=x & r& ret<=et<=y &y &
 (ret==x || ret==y))

A (ret<=x):AA0

+

+

Fig. 1. Assertion Inference via Dynamic Test Execution & Mutation Analysis

The specification inference problem consist of automatically

generating specifications from existing software artifacts, e.g.,

documentation, source code, program executions, etc. At the

source code level, formal program specifications are composed

of a set of (executable) assertions for various program points,

such as method preconditions, postconditions and invariants,

that must hold true during program execution, at the corre-

sponding program points. In this paper, we focus on postcon-
dition assertions, i.e., assertions that state the properties that

are expected to hold after a given method is executed.

Figure 1 depicts the typical process of existing assertion

inference techniques [37], [38], [50]. First, the assertion gen-

eration step, based in general on a search-based algorithm (e.g.

GAssert [50] and EvoSpex [38] use evolutionary search algo-

rithms, while SpecFuzzer [37] uses fuzzing), produces a set of

candidate assertions for a given program/method. Second, the

program’s test suite (given as input or automatically generated)

is executed to determine which of those assertions are coherent

with the behaviors currently exhibited by the program. Lastly,

the non-falsified assertions (i.e., those that are coherent with

the test suite executions) go through a mutation analysis step

for filtering out weak assertions. Here, a non-falsified assertion

that is also coherent with all the mutants’ execution of a

given program, is considered to be weak because it is unable

to distinguish between the original and the mutated program

behaviors, and is hence discarded. The inferred assertions are

the ones that are coherent with the current program behavior

but are falsified by the behavior of buggy programs (i.e., they

kill at least one mutant).

Modern assertion inference techniques take on Daikon [17],

a well-known dynamic technique that infers assertions by

monitoring test executions. Given a program under analysis

and a test suite, Daikon execute the tests, monitors the pro-

gram states at various points, and then evaluates candidate

624

assertions, obtained by instantiating assertion patterns on the

program states. Those assertions that are never falsified by

any test at a given program point are reported as likely

invariants at the program point. As Daikon does not use

mutation analysis or any other sophisticated mechanism to

detect irrelevant/redundant assertions, it often report many

assertions that can be weak or redundant with respect to other

reported program assertions [37].

GAssert [50] and EvoSpex [38] are assertion inference

techniques based on evolutionary search algorithms. Similar to

Daikon, these tools execute a test suite of the program under

analysis and observe the execution in order to infer assertions

that are consistent with the observations. By favoring shorter

assertions during evolution, and also favoring assertions that

are able to detect buggy behaviors via mutation analysis,

these techniques are able infer shorter and stronger assertions,

compared to Daikon. However, as the components of the

evolutionary process are specifically designed to handle the

assertion languages these tools support, changing or extending

these languages implies redefining evolutionary operators and

other elements of the process, which is non-trivial.

SpecFuzzer [37] is another assertion inference technique

which infers assertions through a combination of static anal-

ysis, grammar-based fuzzing, and mutation analysis. First,

it uses a lightweight static analysis to produce a grammar

for the assertion language, which is tuned to the program

under analysis. Second, it uses a grammar-based fuzzer to

generate candidate assertions from the grammar. Then, a

dynamic detector determines which of those assertions are

consistent with the behavior exhibited by a provided test

suite. Finally, SpecFuzzer eliminates redundant and irrelevant

assertions using a selection mechanism based on mutation

analysis. A salient feature of SpecFuzzer is that developers can

adjust the produced specifications by tuning the grammar, as

opposed to making changes to a search algorithm, as GAssert

and EvoSpex would require.

It is worth remarking that all of the above described

techniques infer assertions from the current program behavior,

which may not necessarily be the intended program behavior,

if the program is incorrect. Inferred assertions are useful for

many tasks, including regression and differential analyses, as

well as for program understanding.

B. Assertion Inferring Mutants

Steps 2 and 3 from Figure 1 show that the generated

candidate assertions undergo a two-step filtering process. In

step 2, assertions that are falsified when running the test

suite of a target class C are discarded, since these are invalid

assertions not satisfying the legit program behaviour exhibited

by the test suite execution. Though important to identify valid
assertions, such filtering is not enough as it leaves room

for weak assertions, i.e, assertions that are trivial to satisfy

and would not trigger any error if the target class C had

any incorrect behaviour. For instance, a tautology such as

assert(x >= y || x <= y) is a valid assertion that cannot

be falsified, but it is unlikely to be useful. In the case of

SpecFuzzer [37], the fuzzer reports thousands of candidate

assertions, and only a few are falsified by the test suite.

Such weak assertions are not useful and thus the use of

mutation analysis has been proposed to identify and discard

them (step 3) [37], [38], [50]. The underlying idea is that valid

assertions that are also coherent with every mutant’s execution

of target class C are weak because they represent properties

that hold also for buggy versions of C (the mutants). On the

contrary, assertions that do not hold for at least one mutant of

C, are useful because they are capable of distinguishing buggy

versions of the code. Given a target class C and a set A of

candidate assertions that are consistent with the behavior of

C, a mutant C’ of C is called assertion inferring if at least

one assertion in A is able to kill of C’.
Despite being effective for discarding weak assertions,

mutation analysis suffers from scalability issues due to the

large number of mutants that can be generated from even

a small piece of code. This adversely affects the overall

performance of assertion inference techniques, especially on

large subjects. Our goal in this paper is to effectively identify

Assertion Inferring Mutants to improve the scalability of

assertion inference techniques.

C. Mutant Selection

Mutation analysis is computationally expensive even beyond

its use for assertion inference. This is mainly due to the large

number of mutants that it introduces, all of which require

analysis and execution. To reduce its application cost, it is

imperative to limit the number of mutants to those that are

actually useful, prior to any manual mutant analysis or test

execution. This problem is known as the mutant selection

problem [43] and has been studied in the form of selective

mutation [39], [57], i.e., restricting the number of transforma-

tions to be used, with limited success [11], [31]. A main issue

with selective mutation is the simple syntactic-based nature of

the selection process: a restricted set of transformations is ap-

plied in every appropriate program location, thus ignoring the

program semantics and the contexts of the mutated locations.

D. Subsuming Mutants

In traditional mutation testing – where the goal is to assess

the ability of a test suite in “killing” mutants (i.e., distinguish-

ing the observable behaviors of the mutant and the original

program) – one can reduce the number of mutants to be

analyzed by identifying the subsuming mutants [3], [23], [30].

Given two mutants M1 and M2, M1 subsumes M2 if every

test case T killing M1 also kills M2. The cost of mutation

analysis can then be reduced by identifying the minimal subset

of subsuming mutants, such that any test suite able to kill

these mutants can also kill the entire set of killable mutants

(excluding mutants that are functionally equivalent to the

original program and cannot be killed). Hence, practitioners

can perform mutation testing efficiently by analyzing only

subsuming mutants.

Given the potential of subsuming mutants in reducing

mutation testing overhead, it is reasonable to investigate if they

625

QueueAr_getFront

Subsuming Mutant Both

5 39 40, 41, 43

3

49

8, 12, 13

6 2 42

Assertion Inferring Mutant

Fig. 2. Mutant subsumption hierarchy for the subject QueueAr_getFront
showing the positions of Assertion Inferring Mutants and Subsuming Mutants

are also suitable for assertion inference, i.e., if they can help

to more efficiently discard weak assertions. As we discuss in

Section VII-A, subsuming mutants are generally not sufficient

for the assertion inference task as their use results in losing

almost half of the inferred assertions, compared to considering

all mutants.

III. ILLUSTRATIVE EXAMPLE

Figure 2 shows the mutants generated for the method

getFront() of class QueueAr, one of our subjects. The

graph depicts the mutants’ subsumption hierarchy, which is a

standard way of representing subsumption relations between a

set of mutants generated from a given subject. Nodes represent

mutants of the subject, and an edge connecting mutant M1 to

mutant M2 represents the fact that M2 is subsumed by M1.

In our example, mutant 39 subsumes mutants 2, 3 and 42.

Mutually subsuming mutants are typically merged into a single

node – e.g., mutants 40, 41 and 43 are mutually subsuming.

Our figure highlights in purple the subsuming mutants (those at

the top of the hierarchy), and in green the Assertion Inferring
Mutants.

To analyze the impact that mutation analysis has in the

inference process, we first inferred assertions with Spec-

Fuzzer [37] on the subject QueueAr_getFront with its

default configuration, i.e., using all available mutants. Spec-

Fuzzer inferred 27 assertions, with the assertion filtering step

via mutation analysis (step 3 of Figure 1) taking 91 minutes

on our infrastructure (see Section VI). By contrast, if we only

use subsuming mutants in the filtering step, it only takes 2.5

minutes (36.4 times faster), but produces just 5 assertions.

These results evidence that, while reducing the number of

mutants to analyze can improve the computational efficiency

of the filtering process, subsuming mutants are not appropriate

for this task. Intuitively, this is because the initial purpose

of subsuming mutants is to minimize the number of tests

needed to kill all mutants. In the context of assertion inference

one aims instead at inferring all valid assertions that can

distinguish the mutants from the original code, that is, generate

as many assertions that capture the specific code properties.

For instance, in our QueueAr_getFront example, 5 out

of the 27 inferred assertions are falsified when executing

mutant 5. On the other hand, mutant 6 helps in inferring 21

assertions (i.e., 21 out of the 27 assertions are falsified during

mutant 6 execution); while mutant 2 helps in inferring the

remaining assertion. In other words, by considering only the

five subsuming mutants (i.e., mutants 5, 39, 40, 41 and 43), and

discarding subsumed mutants (including mutants 6 and 2), the

assertion inference results in reporting only 5 assertions, losing

22 strong assertions that could have been inferred by using just

the three Assertion Inferring Mutants (or the entire pool of

mutants at the expense of a significantly higher computational

cost).

The above example demonstrates the difference between

Subsuming Mutants and Assertion Inferring Mutants, and the

need for an approach that can efficiently identify the latter in

order to save valuable time on the mutation analysis step, while

maintaining the benefits of assertion inference. The Seeker
technique that we propose in this paper is the first mutant

selection method especially designed for predicting Assertion
Inferring Mutants, making existing specification inference

techniques more efficient and scalable. As an example, on

the QueueAr getFront example, Seeker predicts mutant 6 as

assertion inferring mutant and helps SpecFuzzer to infer 21

assertions (out of 27 assertions when using all mutants), using

only a fraction of the computation time (30 seconds) that

analyzing all mutants requires (91 minutes).

IV. APPROACH

The main objective of Seeker is to predict whether a mutant

(of a previously unseen piece of code) is likely to be assertion

inferring. To make our approach lightweight in terms of engi-

neering and computational effort, we want Seeker to be able

to (a) learn relevant features of Assertion Inferring Mutants
without requiring manual feature definition, and (b) do so

without costly dynamic analysis of mutant executions. To

achieve this, we decompose our problem into two parts: learn

a representation of mutants using code embedding techniques,

and learn to predict, based on such embeddings, whether the

represented mutants are Assertion Inferring Mutants.

A. Overview of Seeker

Figure 3 shows an overview of Seeker. We decompose our

approach into three steps that we detail later on in this section:

1) Build a token representation: Seeker pre-processes the

original code in order to remove irrelevant information and

produces abstracted code, which is then tokenized to form a

sequence of tokens. Each mutant is ultimately transformed

into its corresponding token representation and undergoes

the next step.

2) Representation learning: We train an encoder-decoder

model to generate an embedding, aka vector representation

of the mutant. This step is where Seeker automatically

learns the relevant features of mutants without requiring

an explicit definition of these features.

626

// Returns the
minimum of two
integers
public static int
min(int x, int y) {

int ret;
if (x <= y)
{ ret = x; }
else
{ ret = y; }
return ret;

}

Abstraction

public static int
VAR_1(int VAR_2, int
VAR_3) {

int VAR_4;
if (VAR_2 <= VAR_3)
{ VAR_4 = VAR_2; }
else
{ VAR_4 = VAR_3; }
return VAR_4;

}

Mutant
Annotation

public static int
VAR_1(int VAR_2, int
VAR_3) {

int VAR_4;
MST if (VAR_2 <=

VAR_3) MSP
ROR:!=(int,int):<(int,int)

{ VAR_4 = VAR_2; }
else
{ VAR_4 = VAR_3; }
return VAR_4;

}

Flattening

public static int VAR_1 (int VAR_2
, int VAR_3) { int VAR_4 ; MST if (
VAR_2 <= VAR_3) MSP
ROR:!=(int,int):<(int,int) { VAR_4 =
VAR_2 ; } else { VAR_4 = VAR_3 ; }
return VAR_4 ; }

public static int VAR_1 (int VAR_2
, int VAR_3) { int VAR_4 ; MST if (
VAR_2 <= VAR_3) MSP
ROR:!=(int,int):<(int,int) { VAR_4 =
VAR_2 ; } else { VAR_4 = VAR_3 ; }
return VAR_4 ; }

Encoder-
Decoder Embeddings

Labels
Classifier
Training Trained

Classifier Label

Sequence Creation

Training Testing

Unseen
Embedding

Embeddings
For

Training

Unseen
Embeddings

(Test Set)

Fig. 3. Overview of Seeker: Source code is abstracted and annotated to represent a mutant, which is further flattened to create a space separated sequence
of tokens. An encoder-decoder model is trained on token sequences to generate mutant embeddings. A classifier is trained on these embeddings and their
corresponding labels (whether or not the mutant is assertion inferring). The trained classifier can then be used for label prediction of an unseen mutant.

3) Classification: Seeker trains a classification model to clas-

sify the mutants (based on their embeddings) as Assertion
Inferring Mutants or not. The true labels used for training

are obtained by running SpecFuzzer on the original code,

and checking whether the mutants are Assertion Inferring
Mutants (i.e., which mutants are killed only by assertions

coherent with the test-suite).

It is interesting to note that the mutant representation learned

by Seeker does not depend on the particular set of assertions

that SpecFuzzer (or any other assertion inference technique)

would check against the mutant. Seeker aims instead at learn-

ing properties of the mutants (and their surrounding contexts)

that are generally useful for assertion inference. This is in line

with the recent work on contextual mutant selection [12], [23],

[27] that aims at selecting high utility mutants for mutation

testing. This characteristic makes Seeker applicable to pieces

of code that have not been seen during training. In particular,

our experiments reveal the ability of Seeker to be effective on

projects not seen during training.

The assertion inference technique that is used to build the

true labels in the classification task is very important as this

technique should produce assertions that capture the software

behavior as precisely as possible in order to distinguish the

buggy versions of the code, i.e., mutants. This is an essential

condition for our classifier to provide relevant prediction

results. In our study, we employ SpecFuzzer [37] that has been

shown to outperform related techniques (i.e., GAssert [50]

and EvoSpex [38]) in assertion inference by inferring 7 times

more assertions than GAssert, and 15 times more assertions

than EvoSpex. Simultaneously, it has been shown to achieve

better performance (F-1 score) than the related approaches for

producing developer-validated assertions.

B. Training Sequences Generation

A major challenge in learning from raw source code is

the huge vocabulary created by the abundance of identifiers

and literals used in the code [2], [52], [53]. In our case, this

large vocabulary may hinder Seeker’s ability to learn relevant

features of Assertion Inferring Mutants. Thus, we first abstract

original (non-mutated) source code by replacing user-defined

entities (function names, variable names, and string literals)

with generic identifiers that can be reused across the source

code file. During this step, we also remove code comments.

This pre-processing yields an abstracted version of the original

source code, as the abstracted code snippet in Figure 3.

To perform the abstraction, we use the publicly available

tool src2abs [52]. This tool first discerns the type of each

identifier and literal in the source code. Then, it replaces

each identifier and literal in the stream of tokens with a

unique ID representing the type and role of the identifier/literal

in the code. Each ID <TYPE>_# is formed by a prefix,

(i.e., <TYPE>_) which represents the type and role of

the identifier/literal, and a numerical ID, (i.e., #) which is

assigned sequentially when reading the code. These IDs are

reused when the same identifier/literal appears again in the

stream of tokens. Although we use src2abs, one can use any

other utility that identifies user-defined entities and replaces

such with reusable identifiers.

Next, to represent a mutant, we annotate the abstracted

code with a mutation annotation on the statement where the

mutation is to be applied. These annotations have the general

shape “MST statement MSP MutationOperator”, where

MST and MSP denote mutation annotation start and stop,

respectively, and are followed by a MutationOperator to

indicate the applied mutation operation (as shown in figure 3).

We repeat the process for every mutant.

Finally, we flatten every mutant (by removing newline,

tabs and extra whitespace) to create a single space separated

sequence of tokens. Using these sequences, we intend to

capture as much code as possible around the mutant without

incurring in a prohibitively expensive training time [21]–[23],

[52], [54]. We found a sequence length of 500 tokens to be a

good fit for our task as it does not exceed 24 hours of training

time (wall clock) on a Tesla V100 GPU.

627

C. Embedding Learning with Encoder-Decoder

Our next step is to learn embeddings, aka vector repre-

sentations, from mutants’ token representation that can later

on be used to train a classification model. We develop an

encoder-decoder model, a neural architecture commonly used

in representation learning tasks [29]. The key principles of our

encoder-decoder architecture are that the encoder transforms

the token representation into an embedding and the decoder

attempts to retrieve the original token representation from

the encoded embedding. The learning objective is then to

minimize the binary cross-entropy between the original token

representation and the decoded one. Once the model training

has converged, we can compute the embedding from any other

mutant’s token representation by feeding the latter into the

encoder and retrieving the output.

We use a bi-directional Recurrent Neural Network

(RNN) [10] to develop our encoder-decoder, as previous

works on code learning have demonstrated the effectiveness

of these models to learn useful representations from code

sequences [5], [21]–[23], [49]. We build Seeker on top of tf-
seq2seq [1], an established general-purpose encoder-decoder

framework. We use a Gated Recurrent Units (GRU) net-

work [13] to act as the RNN cell, which was shown to

perform better than simpler alternatives (e.g. simple RNNs)

both in software engineering and other learning tasks [23],

[48]. To achieve good performance with acceptable model

training time, we utilize AttentionLayerBahdanau [6] as our

attention class, configured with 2 layered AttentionDecoder

and 1 layered BidirectionalRNNEncoder, both with 256 units.

To determine the number of training epochs for model

convergence, we conducted a preliminary study involving a

small validation set (independent of both the training and test

sets used in our evaluation) where we monitor the model’s

performance in replicating (as output) the same mutant se-

quence provided as input. We pursue training the model until

the training performance on the validation set does not further

improve. We found 10 epochs for the sequences up to a length

of 500 tokens to be a good default for our validation sets.

D. Classifying Assertion Inferring Mutants

Next, we train a classification model in predicting whether

a mutant (represented through the embedding produced by the

RNN encoder) is likely to be an assertion inferring mutant. The

learning objective here is to maximize the classification perfor-

mance (which we mainly measure with Matthews Correlation

Coefficient (MCC), see Section VI-B). To obtain our true

classification labels, we run an assertion inference technique

(viz. SpecFuzzer) using all available mutants and exhaustively

determined which mutants are assertion inferring. As for the

classification model, we rely on random forests [9] because

these are lightweight to train and have shown to be effective

in solving various software engineering tasks [26], [45]. We

used standard parameters for random forests, viz. we set the

number of trees to 100, use Gini impurity for splitting, and

set the number of features (i.e., embedding logits) to consider

at each split to the square root of the total number of features.

Once the model training has converged, we can use the

random forest to predict whether an unseen mutant is likely to

be assertion inferring. For the actual classification, we make

the mutant go through the pre-processing pipeline to obtain

its abstract token representation, then feed it into the encoder-

decoder architecture to retrieve its embedding and finally input

it into the classifier to obtain the predicted label (assertion

inferring or not).

V. RESEARCH QUESTIONS

We start our analysis by investigating the prediction per-

formance of Seeker to select Assertion Inferring Mutants and

compare whether these can be approximated by other sets of

mutants, namely, Subsuming Mutants. Thus, we ask:

RQ1 Prediction Evaluation: How effective is Seeker in predict-

ing Assertion Inferring Mutants? Can subsuming mutants

approximate them?

To determine which mutants are assertion inferring (i.e.

those killed by at least one assertion), we consider the dataset

provided by Molina et al. [37] and execute the state of the art

assertion inference technique SpecFuzzer on 40 subjects with-

out discarding any mutant. Then, we analyze the performance

of Seeker in identifying these mutants. We compare the results

with the set of subsuming mutants since they form the main

objective of mutant selection [23], [32], [41] with numerous

strategies targeting them [23], [24], [27], [35].

Since Seeker’s predictions might not be perfect, we also

assess its performance in the context of assertion inference,

and contrast it with other mutant selection strategies, namely,

random mutant selection and subsuming mutants. We consider

random mutant selection since it is an untargeted method that

is often superior to many mutant selection strategies [25], [58]

and is considered by the literature as a strong baseline [12],

[23], [32]. Hence, we check the effectiveness (completeness

w.r.t. to using all mutants) and efficiency (how much time

is required) of SpecFuzzer [37] when utilizing the different

mutant subsets over all supported mutants. Therefore, we ask:

RQ2 Inference Evaluation: How effective and efficient is

Seeker in comparison to subsuming, randomly selected

and all mutants baseline methods with respect to the

assertion inference task?

For this task, we re-execute SpecFuzzer on the 40 subjects, by

selecting the mutants following Seeker and our two baseline

mutant selection techniques (subsuming and random mutant

selection), and compare its performance when executing Spec-

Fuzzer without discarding any mutant.

Finally, in order to investigate if Seeker’s predicted mutants

can help the assertion inference technique SpecFuzzer to scale,

additional subjects (other than the subjects considered by

Molina et al. [37]) must be taken into account. Here, we

determine if considering only Seeker’s predicted mutants can

aid SpecFuzzer to infer assertions in cases where SpecFuzzer

times out if all mutants are considered. Thus, we conduct

experiments on 6 large subjects from GitHub (Table I) where

628

SpecFuzzer timed out. We also compare SpecFuzzer’s per-

formance when it considers Seeker’s predicted mutants vs an

equal number of randomly selected mutants. Hence, we ask:

RQ3 Scalability Evaluation: How does the inclusion of Seeker
in assertion inference techniques impact scalability?

VI. EXPERIMENTAL SETUP

A. Data and Tools

We select 46 Java methods; 40 subjects used in previous

studies [37], [38], [50] for evaluating Seeker’s performance

in RQ1 and RQ2, and 6 larger subjects from GitHub for the

scalability evaluation in RQ3.

Table I records the details of our dataset. For each method

analyzed, it reports the total number of mutants generated,

the number of Assertion Inferring Mutants, and the total

number of assertions inferred when considering all mutants

(i.e., without mutant selection).

To perform mutation testing we use Major [28], and to con-

struct comprehensive test suites (and improve the chances to

infer true assertions), we use EvoSuite [18] and Randoop [40]

to augment the developer test suites, similarly to what was

done by previous work [37].

B. Prediction Performance Metrics

Seeker’s predictions can result in four types of outputs.

Given a mutant that is assertion inferring, if it is predicted as

assertion inferring, then it is a true positive (TP); otherwise,

it is a false negative (FN). Vice-versa, if a mutant that does

not infer any assertion is predicted as assertion inferring, then

it is a false positive (FP); otherwise, it is a true negative

(TN). We can then compute the traditional evaluation metrics

such as Precision and Recall, which quantitatively evaluate the

prediction accuracy of prediction models.Intuitively, Precision
indicates the ratio of correctly predicted positives over all

the considered positives. Recall indicates the ratio of cor-

rectly predicted positives over all actual positives. Yet, these

metrics do not take into account the true negatives and can

be misleading, especially in the case of imbalanced data.

Hence, we complement these with the Matthews Correlation
Coefficient (MCC), a reliable metric of the quality of prediction

models [56]. It is regarded as a balanced measure that can be

used even when the classes are of very different sizes [47],

as in our case, where we have 12.95% Assertion Inferring
Mutants in total, for the 40 subjects in the dataset (Table I).

MCC is calculated as:

MCC =
TP × TN − FP × FN

√
(TP + FP)(TP + FN)(TN + FP)(TN + FN)

MCC returns a coefficient between 1 and -1. An MCC value of

1 indicates a perfect prediction, while a value of -1 indicates

a perfect inverse prediction, i.e., a total disagreement between

prediction and reality. MCC value of 0 indicates that the

prediction performance is equivalent to random guessing.

C. Experimental Procedure

To answer our RQs we execute SpecFuzzer to infer asser-

tions for all subjects (Table I) with its default setup, i.e., using

all mutants to filter candidate assertions during the mutation

analysis step (Figure 1). We also determine Assertion Inferring
Mutants and Subsuming Mutants from SpecFuzzer execution

logs for the 40 subjects used in RQ1 and RQ2. Once the

mutants are labeled, we re-execute SpecFuzzer by employing

the following 3 mutant selection techniques:

• Subsuming Mutant Selection. We execute SpecFuzzer by

only considering subsuming mutants for mutation analysis.

• Seeker. We train models on Assertion Inferring Mutants and

perform k-fold cross validation (where k = 5) at the project

level, i.e., we train on 32 subjects and evaluate/test on 8

unseen during testing subjects, and repeat 5 times. Once

we get the predictions for all 40 subjects, we re-execute

SpecFuzzer by only considering the mutants predicted as

assertion inferring.

• Random Mutant Selection. We randomly select an equal

number of mutants (equal to the number of mutants pre-

dicted as assertion inferring) from the original set of mu-

tants and re-execute SpecFuzzer by only considering these

randomly selected mutants. We repeat this step 10 times

to eliminate the chances to report coincidental results. We

report the median case results.

To answer RQ1, we compute the Prediction Performance

Metrics of Seeker in order to show its learning ability. This

is a sanity check that our prediction modeling framework

indeed manages to predict something well. However, predic-

tion results do not reflect the end-task (assertion inference)

performance since mutants are not independent, there are

large overlaps between the tests and assertions that lead to

mutant kills. To answer RQ2, we thus measure the cost of

the employed mutant selection technique, i.e., how many of

the assertions inferred when all mutants are considered, are

not inferred when mutant selection is used, and the benefit

gained, i.e., the improvement in terms of wall clock time.

To answer RQ3, i.e., if Seeker’s predicted mutants can

help SpecFuzzer to infer assertions for 6 subjects where it

was not able to infer any assertion (timed out when all

mutants were considered for analysis), we retrain Seeker on

all 40 subjects (with available labeled mutants) and predict

likely Assertion Inferring Mutants for these 6 subjects. We

re-execute SpecFuzzer by only using the predicted mutants

and by discarding all other mutants from the original set.

Additionally, we randomly select mutants in a similar fashion

as before (following RQ2 experimental procedure) and re-

execute SpecFuzzer accordingly to compare performance with

Random Mutant Selection. Thus to answer RQ3 we measure –

1) In how many subjects, the selected mutants lead to assertion

inference, and 2) The ratio of assertion inferring mutants from

the entire set of mutants.

629

TABLE I
THE TABLE RECORDS THE TEST SUBJECTS, METHOD DETAILS, ALL MUTANTS COUNT, ASSERTION INFERRING MUTANTS COUNT, AND INFERRED

ASSERTIONS COUNT WHEN ALL MUTANTS ARE CONSIDERED, (I.E., SPECFUZZER’S DEFAULT EXECUTION WITH NO MUTANT SELECTION).
ADDITIONALLY, THE TABLE RECORDS Seeker’S PREDICTION PERFORMANCE SCORES FOR EVERY PROJECT.

Subject Method All Assertion All Seeker’s Prediction Performance
Mutants Inferring Inferred

Mutants Assertions TP TN FP FN Precision Recall MCC

ArithmeticUtils subAndCheck math.ArithmeticsUtils.subAndCheck 16 2 3 1 14 0 1 1.0 0.5 0.68
BooleanUtils compare lang.BooleanUtils.compare 13 13 29 13 0 0 0 1.0 1.0 1.0
composite addChild eiffel.Composte.addChild 35 6 185 6 28 1 0 0.86 1.0 1.0
doublylinkedlistnode insertRight eiffel.DLLN.insert right 18 7 16 1 11 0 6 1.0 0.14 0.3
doublylinkedlistnode remove eiffel.DLLN.remove 18 4 21 1 14 0 3 1.0 0.25 0.45
Envelope maxExtent tsuite.Envelope.maxExtent 56 10 188 6 45 1 4 0.86 0.6 0.67
FastMathNew floor math.FastMath.floor 42 18 60 1 24 0 17 1.0 0.06 0.18
IntMath mod guava.IntMath.mod 21 15 199 12 5 1 3 0.92 0.8 0.62
listcomp02 insert r cozy.ListComp02.insert r 20 2 1 1 18 0 1 1.0 0.5 0.69
listcomp02 insert s cozy.ListComp02.insert s 20 1 1 1 19 0 0 1.0 1.0 1.0
map count eiffel.Map.count 63 3 4 1 60 0 2 1.0 0.33 0.57
map extend eiffel.Map.extend 65 9 10 1 56 0 8 1.0 0.11 0.31
map remove eiffel.Map.remove 63 1 1 1 62 0 0 1.0 1.0 1.0
MathUtilsNew copySignInt math.MathUtils.copySignInt 48 2 16 1 46 0 1 1.0 0.5 0.7
MathUtil clamp tsuite.MathUtil.clamp 11 8 12 8 2 1 0 0.89 1.0 1.0
maxbag add cozy.MaxBag.add 748 53 49 1 695 0 52 1.0 0.02 0.13
maxbag getMax cozy.MaxBag.get max 749 21 25 19 727 1 2 0.95 0.9 0.93
maxbag remove cozy.MaxBag.remove 748 67 26 44 680 1 23 0.98 0.66 0.79
polyupdate a1 cozy.PolyUpdate.a 54 26 100 26 27 1 0 0.96 1.0 1.0
polyupdate sm cozy.PolyUpdate.sm 56 13 73 13 42 1 0 0.93 1.0 1.0
QueueAr dequeue daikon.QueueAr.dequeue 66 9 68 1 57 0 8 1.0 0.11 0.31
QueueAr dequeueAll daikon.QueueAr.dequeueAll 67 11 69 1 56 0 10 1.0 0.09 0.28
QueueAr enqueue daikon.QueueAr.enqueue 66 17 119 1 49 0 16 1.0 0.06 0.21
QueueAr getFront daikon.QueueAr.getFront 67 3 27 1 62 0 4 1.0 0.2 0.43
QueueAr makeEmpty daikon.QueueAr.makeEmpty 67 20 73 1 47 0 19 1.0 0.05 0.19
ringbuffer count eiffel.RingBuffer.count 101 28 119 15 72 1 13 0.94 0.54 0.64
ringbuffer extend eiffel.RingBuffer.extend 101 20 148 5 80 1 15 0.83 0.25 0.4
ringbuffer item eiffel.RingBuffer.item 101 11 116 11 89 1 0 0.92 1.0 1.0
ringbuffer remove eiffel.RingBuffer.remove 101 14 143 14 86 1 0 0.93 1.0 1.0
ringbuffer wipeOut eiffel.RingBuffer.wipe out 101 13 95 13 87 1 0 0.93 1.0 1.0
simple-examples abs oasis.SimpleMethods.abs 20 18 30 18 1 1 0 0.95 1.0 1.0
simple-examples addElementToSet oasis.SimpleMethods.addElementToSet 3 2 1 2 1 0 0 1.0 1.0 1.0
simple-examples getMin oasis.SimpleMethods.getMin 7 6 51 1 1 0 5 1.0 0.17 0.17
StackAr makeEmpty daikon.StackAr.makeEmpty 47 13 47 1 34 0 12 1.0 0.08 0.24
StackAr pop daikon.StackAr.pop 63 10 35 1 53 0 9 1.0 0.1 0.29
StackAr push daikon.StackAr.push 55 6 25 1 49 0 5 1.0 0.17 0.39
StackAr top daikon.StackAr.top 50 8 3 1 42 0 7 1.0 0.12 0.33
StackAr topAndPop daikon.StackAr.topAndPop 54 13 68 1 41 0 12 1.0 0.08 0.24
structure foo cozy.Structure.foo 27 5 1 1 22 1 4 0.5 0.2 0.23
structure setX cozy.Structure.setX 26 15 131 10 11 0 5 1.0 0.67 0.68
EmailScanner findFirst nibor.autolink.internal.EmailScanner.findFirst 134 Subject considered for Scalability Evaluation (RQ3)* — SpecFuzzer timed out
EmailScanner scan nibor.autolink.internal.EmailScanner.scan 134 Subject considered for Scalability Evaluation (RQ3)* — SpecFuzzer timed out
IdentityHashSet isEmpty leplus.ristretto.util.IdentityHashSet.isEmpty 23 Subject considered for Scalability Evaluation (RQ3)* — SpecFuzzer timed out
OptionGroup setRequired apache.commons.cli.OptionGroup.setRequired 34 Subject considered for Scalability Evaluation (RQ3)* — SpecFuzzer timed out
OptionGroup setSelected apache.commons.cli.OptionGroup.setSelected 34 Subject considered for Scalability Evaluation (RQ3)* — SpecFuzzer timed out
Scanners findUrlEnd nibor.autolink.internal.Scanners.findUrlEnd 111 Subject considered for Scalability Evaluation (RQ3)* — SpecFuzzer timed out

* Subjects for which SpecFuzzer timed out during mutation analysis are considered for Scalability Evaluation (RQ3).

VII. EXPERIMENTAL RESULTS

A. Prediction Evaluation (RQ1)

Figure 4 shows a Venn diagram recording the distribution

of Assertion Inferring Mutants and subsuming mutant sets. We

can observe that the set of subsuming mutants is significantly

different from the set of Assertion Inferring Mutants. Only

a small number of subsuming mutants (75 out 264) are also

assertion inferring, while a large number of Assertion Inferring
Mutants (450 out of 525) are not subsuming. This shows that

subsuming mutant selection is not well suited for the assertion

inference task. Moreover, the set of assertion-inferring mutants

represents 12.9% of the killable mutants, suggesting that an

effective mutant selection strategy would allow for drastic

assertion inference overhead reductions.

Venn diagram from Figure 5 shows that Seeker detects

almost half of Assertion Inferring Mutants (258 out 525).

Table I depicts Seeker’s prediction performance across all 40

projects. Overall, Seeker predicts Assertion Inferring Mutants
with 0.79 Precision, 0.49 Recall, and 0.58 MCC, a much better

performance than random mutant selection (whose MCC value

is 0). Thus, Seeker can provide significant improvements in

terms of inferred assertions over baseline methods.

Answer to RQ1: Seeker predicts Assertion Inferring Mutants
with 0.58 MCC, 0.79 Precision, and 0.49 Recall. The

class of subsuming mutants cannot reliably select Assertion
Inferring Mutants (only 28% of the subsuming mutants are

also assertion inferring).

B. Inference Evaluation (RQ2)

Table II records SpecFuzzer’s performance w.r.t. assertion

inference by employing different mutant sets, i.e, Subsuming
Mutant Selection, Seeker, and Random Mutant Selection. The

results show that when SpecFuzzer uses Seeker’s predicted

mutants, it infers 87.51% of total assertions, i.e., only 12.49%

of the assertions ares missed (the cost of considering only

Seeker’s predicted mutants) with 46.29 times faster mutation

analysis than using all the mutants (and 2.5 times faster than

considering subsuming mutants). Seeker enables SpecFuzzer

to infer at least one assertion for all subjects, and successfully

infers all assertions for 23 subjects.

630

Fig. 4. Mutant Class distribution

Fig. 5. Prediction distribution

When SpecFuzzer uses the subsuming mutants, it infers

57.77% of total assertions. It infers all assertions for 5 subjects

but fails to infer any for 7 subjects. Although it misses 42.23%

of the assertions (the cost of considering only subsuming

mutants), diminishing the benefit of an improved mutant

analysis time (19.16 times faster than using all mutants). A

good improvement in the mutation testing time is noted when

SpecFuzzer uses randomly selected mutants, but it fails to infer

48.53% of total assertions. In 2 cases it infers all assertions and

fails to infer any assertion for 2 other cases. Overall, Seeker
outperforms both, random and subsuming mutant selection,

with a statistically significant3 sizeable difference.

Answer to RQ2: Seeker enables SpecFuzzer to infer as-

sertions for all subjects, running 46.29 times faster at the

expense of 12.49% of the assertions. At the same time,

Seeker enables SpecFuzzer to infer 36% and 30% more

assertions than Random Mutant Selection and Subsuming
Mutant Selection, runs 2.5 times faster than Subsuming
Mutant Selection and requires similar execution time (wall

clock) to Random Mutant Selection.

C. Scalability Evaluation (RQ3)

Table III records the results of SpecFuzzer’s performance

in inferring assertions when it employs Seeker and Random
Mutant Selection, for the subjects where mutation analysis

with all mutants timed out. Seeker selected 2.99% mutants

3We compared the inferred assertion percentages using Wilcoxon sign-rank-
test and obtained a p− value < 0.05.

TABLE II
RQ2 RESULTS - PERFORMANCE OF ASSERTION INFERENCE

Mutation filtered assertion inference
With Subsuming With With Random
Mutant Selection Seeker Mutant Selection

Inferred Assertions 57.77% 87.51% 51.47%
(per Subject)
Missed Assertions 42.23% 12.49% 48.53%
(Cost)
Improvement in 19.16 times 46.29 times 47.34 times
Time (Benefit)

Subjects with assertions inferred

Total Subjects# 40 With Subsuming With With Random
Mutant Selection Seeker Mutant Selection

Subjects with All 5 23 2
assertions inferred
Subjects with No 7 0 2
assertion inferred

TABLE III
RQ3 RESULTS - SCALABILITY EVALUATION

Assertion Inferring Mutants (among mutants selected)
Mutants selected: 2.99% from the With With Random
entire mutant set (per subject) Seeker Mutant Selection

Assertion Inferring Mutants 83.33% 16.67%
(among selected mutants)

Inferred assertions#

Subject With With Random
Seeker Mutant Selection

EmailScanner findFirst 85 58
EmailScanner scan 192 0
IdentityHashSet isEmpty 3 2
OptionGroup setRequired 8 8
OptionGroup setSelected 8 0
Scanners findUrlEnd 23 0

from the entire mutant set. Among the predicted mutants,

83.33% mutants are assertion inferring. When an equal number

of mutants are selected using Random Mutant Selection,

only 16.67% of mutants selected are assertion inferring.

When SpecFuzzer considers only Seeker’s predicted mutants

for assertion filtering, it infers assertions for all subjects

mentioned in Table III within 16 minutes, on average. On the

other hand, for 50% of the subjects (3 out of 6), SpecFuzzer

fails to infer any assertion if it uses Random Mutant Selection.

Answer to RQ3: Seeker enables SpecFuzzer to scale by in-

ferring assertions for all subjects where a complete mutation

analysis timed out and Random Mutant Selection failed in

50% of the cases.

VIII. DISCUSSION

In the work of Molina et al. [37], the authors carefully

studied the subjects and manually produced corresponding

Ground Truth assertions capturing the intended behavior of the

subjects. SpecFuzzer [37] was able to infer the ground truth

assertions for 26 subjects, when all mutants were considered

for assertion inference. Hence, we also compared the effec-

tiveness of all three mutant selection techniques in inferring

Ground Truth assertions and assessed how Seeker compares

with the subsuming and randomly selected mutants in terms

of inferred ground truth assertions.

631

TABLE IV
DISCUSSION - INFERRING GROUND TRUTH ASSERTIONS

Ground Truth assertion inference
With Subsuming With With Random
Mutant Selection Seeker Mutant Selection

Inferred Assertions 67.31% 96.15% 19.23%
(per Subject)

Subjects with assertions inferred

Total Subjects# 26 With Subsuming With With Random
Mutant Selection Seeker Mutant Selection

Subjects with All 17 25 5
assertions inferred
Subjects with No 8 1 21
assertion inferred

Table IV records SpecFuzzer’s performance in ground truth

assertion inference by employing the different mutant selec-

tion techniques. On considering Seeker’s predicted mutants,

SpecFuzzer infers almost all (96.15%) ground truth assertions,

which is superior to both Random Mutant Selection (infers

19.23%) and Subsuming Mutant Selection (infers 67.31%).

Also, Seeker’s predicted mutants enable SpecFuzzer to infer

at least one ground truth assertion for all subjects except for

one subject (doublylinkedlistnode insertRight). This evidences

that Seeker can help in inferring quality assertions, in this case,

human-written and manually validated assertions.

IX. THREATS TO VALIDITY

External Validity: Threats may relate to the subjects we

used. Although our evaluation expands to projects of various

sizes, the results may not generalize to other projects. We

consider this threat of low importance since we have a large

sample of subjects (40 subjects from the previous studies [37],

[38], [50] and 6 subjects from GitHub for scalability eval-

uation). Moreover, our predictions are based on the local

mutant context, that has been shown to be determinant of

mutants’ utility [23], [27]. Other threats may relate to the

assertion inference technique that we used for evaluation. This

choice was made since SpecFuzzer is the current state of

the art and operates similarly to other techniques (the main

differences lie in the grammar used). We consider this threat

of low importance since Seeker deals with mutation analysis,

which is used in the same way by all assertion inference

techniques [37], [38], [50], and are directly impacted by

the number of mutants involved. Nevertheless, in case other

techniques require different predictions, one could re-train,

tune and use Seeker for the specific method of interest, as

we did here with SpecFuzzer.

Internal Validity: Threats may relate to the restriction that

we impose on sequence length, i.e., a maximum of 500 tokens.

This was done to enable reasonable model training time,

approximately 24 hours to learn mutant embeddings on a Tesla

V100 gpu. Other threats may be due to the use of tf-seq2seq [1]

for learning mutant embeddings. This choice was made for

simplicity, to use the related framework out of the box, similar

to related studies [21], [22], [52]. Other internal validity threats

could be related to the test suites we used and the mutants

considered as assertion inferring. To deal with this issue, we

used well-tested programs and state-of-the-art tools to generate

extensive pools of tests (Evosuite [18] and Randoop [40])

as done by previous work [37], [38], [50]. This is also a

typical process followed in mutation testing studies [23], [27],

[32], [41]. To be more accurate, our underlying assumption is

that the extensive pool of tests used in our experiments is a

reasonable approximation of the program’s test executions.

Construct Validity: Our assessment metrics (assertions in-

ferred and incurred time during mutation analysis) may not

reflect the actual cost or benefit values. These metrics are

intuitive, i.e., the inferred assertions are the output of assertion

inference techniques, and the incurred time during mutation

analysis is the wall clock time these techniques invest in

filtering assertions. We mitigate these threats by following

suggestions from mutation testing and assertion inference

literature, using state-of-the-art tools, performing multiple

simulations, and confirming consistent results across subjects.

X. CONCLUSION

We introduced the notion of Assertion Inferring Mutants and

demonstrated that this small subset of mutants (i.e., 12.95%

mutants of the entire mutant set) is sufficient to effectively

identify strong assertions. We also showed that this mutant

set is significantly different from Subsuming Mutants (i.e.,

71.59% of assertion inferring mutants are not subsuming).

Though subsuming mutants have been frequently cited in the

mutation testing literature and have been shown to improve

efficiency, they are not sufficient for the assertion inference

task as their use results in losing almost half of the strong

assertions. We also explored a learning-based approach, in

particular, the widely adopted encoder-decoder architecture

that can learn to statically identify assertion inferring mutants

from the given mutant sets, given their contextual information.

Our experiments on 40 subjects show that it identified assertion

inferring mutants with 0.58 MCC, 0.79 Precision, and 0.49

Recall. These predictions enabled 42.29 times faster assertion

inference with minor effectiveness loss (12.49% fewer asser-

tions inferred) compared to the use of all mutants. Moreover, it

enabled assertion inference technique SpecFuzzer to scale on

all our considered large subjects (by inferring assertions where

SpecFuzzer timed out previously) in comparison to Random
Mutant Selection which failed to infer any assertion in 50%

of the cases.

XI. DATA AVAILABILITY

In addition to our dataset consisting of all projects’ source

code, augmented test suites, generated mutants, and Spec-

Fuzzer execution logs, Seeker’s source code with additional

plots is also publicly available in our GitHub repository4.

ACKNOWLEDGMENT

This work is supported by the Luxembourg National Re-

search Fund (FNR) through the CORE project under Grant

C19/IS/13646587/RASoRS.

4https://github.com/garghub/seeker

632

REFERENCES

[1] Martı́n Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng
Chen, Craig Citro, Gregory S. Corrado, Andy Davis, Jeffrey Dean,
Matthieu Devin, Sanjay Ghemawat, Ian J. Goodfellow, Andrew Harp,
Geoffrey Irving, Michael Isard, Yangqing Jia, Rafal Józefowicz, Lukasz
Kaiser, Manjunath Kudlur, Josh Levenberg, Dan Mané, Rajat Monga,
Sherry Moore, Derek Gordon Murray, Chris Olah, Mike Schuster,
Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul A.
Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fernanda B. Viégas, Oriol
Vinyals, Pete Warden, Martin Wattenberg, Martin Wicke, Yuan Yu,
and Xiaoqiang Zheng. Tensorflow: Large-scale machine learning on
heterogeneous distributed systems. CoRR, abs/1603.04467, 2016.

[2] Uri Alon, Shaked Brody, Omer Levy, and Eran Yahav. code2seq:
Generating sequences from structured representations of code. In 7th
International Conference on Learning Representations, ICLR 2019, New
Orleans, LA, USA, May 6-9, 2019. OpenReview.net, 2019.

[3] Paul Ammann, Márcio Eduardo Delamaro, and Jeff Offutt. Establishing
theoretical minimal sets of mutants. In Seventh IEEE International
Conference on Software Testing, Verification and Validation, ICST 2014,
March 31 2014-April 4, 2014, Cleveland, Ohio, USA, pages 21–30. IEEE
Computer Society, 2014.

[4] Paul Ammann and Jeff Offutt. Introduction to Software Testing.
Cambridge University Press, 2008.

[5] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural
machine translation by jointly learning to align and translate. In Yoshua
Bengio and Yann LeCun, editors, 3rd International Conference on
Learning Representations, ICLR 2015, San Diego, CA, USA, May 7-
9, 2015, Conference Track Proceedings, 2015.

[6] Dzmitry Bahdanau, Jan Chorowski, Dmitriy Serdyuk, Philemon Brakel,
and Yoshua Bengio. End-to-end attention-based large vocabulary speech
recognition. In 2016 IEEE International Conference on Acoustics,
Speech and Signal Processing, ICASSP 2016, Shanghai, China, March
20-25, 2016, pages 4945–4949. IEEE, 2016.

[7] Earl T. Barr, Mark Harman, Phil McMinn, Muzammil Shahbaz, and Shin
Yoo. The oracle problem in software testing: A survey. IEEE Trans.
Software Eng., 41(5):507–525, 2015.

[8] Arianna Blasi, Alberto Goffi, Konstantin Kuznetsov, Alessandra Gorla,
Michael D. Ernst, Mauro Pezzè, and Sergio Delgado Castellanos.
Translating code comments to procedure specifications. In Frank Tip
and Eric Bodden, editors, Proceedings of the 27th ACM SIGSOFT
International Symposium on Software Testing and Analysis, ISSTA 2018,
Amsterdam, The Netherlands, July 16-21, 2018, pages 242–253. ACM,
2018.

[9] Leo Breiman. Random forests. Mach. Learn., 45(1):5–32, 2001.
[10] Denny Britz, Anna Goldie, Minh-Thang Luong, and Quoc V. Le.

Massive exploration of neural machine translation architectures. CoRR,
abs/1703.03906, 2017.

[11] Thierry Titcheu Chekam, Mike Papadakis, Tegawendé F. Bissyandé,
Yves Le Traon, and Koushik Sen. Selecting fault revealing mutants.
Empir. Softw. Eng., 25(1):434–487, 2020.

[12] Thierry Titcheu Chekam, Mike Papadakis, Tegawendé F. Bissyandé,
Yves Le Traon, and Koushik Sen. Selecting fault revealing mutants.
Empir. Softw. Eng., 25(1):434–487, 2020.

[13] Kyunghyun Cho, Bart van Merrienboer, Çaglar Gülçehre, Dzmitry
Bahdanau, Fethi Bougares, Holger Schwenk, and Yoshua Bengio. Learn-
ing phrase representations using RNN encoder-decoder for statistical
machine translation. In Alessandro Moschitti, Bo Pang, and Walter
Daelemans, editors, Proceedings of the 2014 Conference on Empirical
Methods in Natural Language Processing, EMNLP 2014, October 25-
29, 2014, Doha, Qatar, A meeting of SIGDAT, a Special Interest Group
of the ACL, pages 1724–1734. ACL, 2014.

[14] Lori A. Clarke and David S. Rosenblum. A historical perspective on
runtime assertion checking in software development. ACM SIGSOFT
Softw. Eng. Notes, 31(3):25–37, 2006.

[15] Marcelo d’Amorim, Carlos Pacheco, Tao Xie, Darko Marinov, and
Michael D. Ernst. An empirical comparison of automated generation
and classification techniques for object-oriented unit testing. In 21st
IEEE/ACM International Conference on Automated Software Engineer-
ing (ASE 2006), 18-22 September 2006, Tokyo, Japan, pages 59–68.
IEEE Computer Society, 2006.

[16] Brian Demsky, Michael D. Ernst, Philip J. Guo, Stephen McCamant,
Jeff H. Perkins, and Martin C. Rinard. Inference and enforcement of data

structure consistency specifications. In Lori L. Pollock and Mauro Pezzè,
editors, Proceedings of the ACM/SIGSOFT International Symposium on
Software Testing and Analysis, ISSTA 2006, Portland, Maine, USA, July
17-20, 2006, pages 233–244. ACM, 2006.

[17] Michael D. Ernst, Jeff H. Perkins, Philip J. Guo, Stephen McCamant,
Carlos Pacheco, Matthew S. Tschantz, and Chen Xiao. The daikon sys-
tem for dynamic detection of likely invariants. Sci. Comput. Program.,
69(1-3):35–45, 2007.

[18] Gordon Fraser and Andrea Arcuri. Evosuite: automatic test suite
generation for object-oriented software. In Tibor Gyimóthy and Andreas
Zeller, editors, SIGSOFT/FSE’11 19th ACM SIGSOFT Symposium on
the Foundations of Software Engineering (FSE-19) and ESEC’11: 13th
European Software Engineering Conference (ESEC-13), Szeged, Hun-
gary, September 5-9, 2011, pages 416–419. ACM, 2011.

[19] Gordon Fraser and Andreas Zeller. Mutation-driven generation of unit
tests and oracles. IEEE Trans. Software Eng., 38(2):278–292, 2012.

[20] Juan P. Galeotti, Nicolás Rosner, Carlos López Pombo, and Marcelo F.
Frias. Analysis of invariants for efficient bounded verification. In Paolo
Tonella and Alessandro Orso, editors, Proceedings of the Nineteenth
International Symposium on Software Testing and Analysis, ISSTA 2010,
Trento, Italy, July 12-16, 2010, pages 25–36. ACM, 2010.

[21] Aayush Garg, Renzo Degiovanni, Matthieu Jimenez, Maxime Cordy,
Mike Papadakis, and Yves Le Traon. Learning from what we know: How
to perform vulnerability prediction using noisy historical data. Empir.
Softw. Eng., 27(7):169, 2022.

[22] Aayush Garg, Renzo Degiovanni, Mike Papadakis, and Yves Le Traon.
Vulnerability mimicking mutants. CoRR, abs/2303.04247, 2023.

[23] Aayush Garg, Milos Ojdanic, Renzo Degiovanni, Thierry Titcheu
Chekam, Mike Papadakis, and Yves Le Traon. Cerebro: Static sub-
suming mutant selection. IEEE Transactions on Software Engineering,
pages 1–1, 2022.

[24] Dunwei Gong, Gongjie Zhang, Xiangjuan Yao, and Fanlin Meng.
Mutant reduction based on dominance relation for weak mutation testing.
Information & Software Technology, 81:82–96, 2017.

[25] Rahul Gopinath, Mohammad Amin Alipour, Iftekhar Ahmed, Carlos
Jensen, and Alex Groce. On the limits of mutation reduction strategies.
In Laura K. Dillon, Willem Visser, and Laurie A. Williams, editors, Pro-
ceedings of the 38th International Conference on Software Engineering,
ICSE 2016, Austin, TX, USA, May 14-22, 2016, pages 511–522. ACM,
2016.

[26] Matthieu Jimenez, Renaud Rwemalika, Mike Papadakis, Federica Sarro,
Yves Le Traon, and Mark Harman. The importance of accounting
for real-world labelling when predicting software vulnerabilities. In
Proceedings of the 2019 27th ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of Software
Engineering, ESEC/FSE 2019, page 695–705, New York, NY, USA,
2019. Association for Computing Machinery.

[27] René Just, Bob Kurtz, and Paul Ammann. Inferring mutant utility from
program context. In Proceedings of the 26th ACM SIGSOFT Interna-
tional Symposium on Software Testing and Analysis, Santa Barbara, CA,
USA, July 10 - 14, 2017, pages 284–294, 2017.

[28] René Just, Franz Schweiggert, and Gregory M. Kapfhammer. MAJOR:
an efficient and extensible tool for mutation analysis in a java compiler.
In Perry Alexander, Corina S. Pasareanu, and John G. Hosking, editors,
26th IEEE/ACM International Conference on Automated Software Engi-
neering (ASE 2011), Lawrence, KS, USA, November 6-10, 2011, pages
612–615. IEEE Computer Society, 2011.

[29] Nal Kalchbrenner and Phil Blunsom. Recurrent continuous translation
models. In Proceedings of the 2013 Conference on Empirical Methods
in Natural Language Processing, EMNLP 2013, 18-21 October 2013,
Grand Hyatt Seattle, Seattle, Washington, USA, A meeting of SIGDAT,
a Special Interest Group of the ACL, pages 1700–1709. ACL, 2013.

[30] Marinos Kintis, Mike Papadakis, and Nicos Malevris. Evaluating
mutation testing alternatives: A collateral experiment. In Jun Han
and Tran Dan Thu, editors, 17th Asia Pacific Software Engineering
Conference, APSEC 2010, Sydney, Australia, November 30 - December
3, 2010, pages 300–309. IEEE Computer Society, 2010.

[31] Bob Kurtz, Paul Ammann, Jeff Offutt, Márcio E. Delamaro, Mariet
Kurtz, and Nida Gökçe. Analyzing the validity of selective mutation with
dominator mutants. In Proceedings of the 2016 24th ACM SIGSOFT
International Symposium on Foundations of Software Engineering, FSE
2016, page 571–582, New York, NY, USA, 2016. Association for
Computing Machinery.

633

[32] Bob Kurtz, Paul Ammann, Jeff Offutt, Márcio Eduardo Delamaro,
Mariet Kurtz, and Nida Gökçe. Analyzing the validity of selective
mutation with dominator mutants. In Thomas Zimmermann, Jane
Cleland-Huang, and Zhendong Su, editors, Proceedings of the 24th
ACM SIGSOFT International Symposium on Foundations of Software
Engineering, FSE 2016, Seattle, WA, USA, November 13-18, 2016, pages
571–582. ACM, 2016.

[33] Gary T. Leavens, Yoonsik Cheon, Curtis Clifton, Clyde Ruby, and
David R. Cok. How the design of JML accommodates both runtime
assertion checking and formal verification. Sci. Comput. Program., 55(1-
3):185–208, 2005.

[34] Francesco Logozzo and Thomas Ball. Modular and verified automatic
program repair. In Gary T. Leavens and Matthew B. Dwyer, editors,
Proceedings of the 27th Annual ACM SIGPLAN Conference on Object-
Oriented Programming, Systems, Languages, and Applications, OOP-
SLA 2012, part of SPLASH 2012, Tucson, AZ, USA, October 21-25,
2012, pages 133–146. ACM, 2012.

[35] Michaël Marcozzi, Sébastien Bardin, Nikolai Kosmatov, Mike Pa-
padakis, Virgile Prevosto, and Loı̈c Correnson. Time to clean your test
objectives. In Michel Chaudron, Ivica Crnkovic, Marsha Chechik, and
Mark Harman, editors, Proceedings of the 40th International Conference
on Software Engineering, ICSE 2018, Gothenburg, Sweden, May 27 -
June 03, 2018, pages 456–467. ACM, 2018.

[36] Bertrand Meyer. Object-Oriented Software Construction, 2nd Edition.
Prentice-Hall, 1997.

[37] Facundo Molina, Marcelo d’Amorim, and Nazareno Aguirre. Fuzzing
class specifications. In 44th IEEE/ACM 44th International Conference
on Software Engineering, ICSE 2022, Pittsburgh, PA, USA, May 25-27,
2022, pages 1008–1020. ACM, 2022.

[38] Facundo Molina, Pablo Ponzio, Nazareno Aguirre, and Marcelo F. Frias.
Evospex: An evolutionary algorithm for learning postconditions. In 43rd
IEEE/ACM International Conference on Software Engineering, ICSE
2021, Madrid, Spain, 22-30 May 2021, pages 1223–1235. IEEE, 2021.

[39] A. Jefferson Offutt, Ammei Lee, Gregg Rothermel, Roland H. Untch,
and Christian Zapf. An experimental determination of sufficient mutant
operators. ACM Trans. Softw. Eng. Methodol., 5(2):99–118, 1996.

[40] Carlos Pacheco, Shuvendu K. Lahiri, Michael D. Ernst, and Thomas
Ball. Feedback-directed random test generation. In 29th International
Conference on Software Engineering (ICSE 2007), Minneapolis, MN,
USA, May 20-26, 2007, pages 75–84. IEEE Computer Society, 2007.

[41] Mike Papadakis, Christopher Henard, Mark Harman, Yue Jia, and
Yves Le Traon. Threats to the validity of mutation-based test assessment.
In Andreas Zeller and Abhik Roychoudhury, editors, Proceedings of the
25th International Symposium on Software Testing and Analysis, ISSTA
2016, Saarbrücken, Germany, July 18-20, 2016, pages 354–365. ACM,
2016.

[42] Mike Papadakis, Marinos Kintis, Jie Zhang, Yue Jia, Yves Le Traon, and
Mark Harman. Chapter six - mutation testing advances: An analysis and
survey. Adv. Comput., 112:275–378, 2019.

[43] Mike Papadakis, Marinos Kintis, Jie Zhang, Yue Jia, Yves Le Traon, and
Mark Harman. Chapter six - mutation testing advances: An analysis and
survey. Adv. Comput., 112:275–378, 2019.

[44] Jeff H. Perkins, Sunghun Kim, Samuel Larsen, Saman P. Amarasinghe,
Jonathan Bachrach, Michael Carbin, Carlos Pacheco, Frank Sherwood,
Stelios Sidiroglou, Gregory T. Sullivan, Weng-Fai Wong, Yoav Zibin,
Michael D. Ernst, and Martin C. Rinard. Automatically patching errors
in deployed software. In Jeanna Neefe Matthews and Thomas E. An-
derson, editors, Proceedings of the 22nd ACM Symposium on Operating
Systems Principles 2009, SOSP 2009, Big Sky, Montana, USA, October
11-14, 2009, pages 87–102. ACM, 2009.

[45] Gustavo Pinto, Breno Miranda, Supun Dissanayake, Marcelo d’Amorim,
Christoph Treude, and Antonia Bertolino. What is the vocabulary of
flaky tests? In Proceedings of the 17th International Conference on
Mining Software Repositories, MSR ’20, page 492–502, New York, NY,
USA, 2020. Association for Computing Machinery.

[46] J. K. Rowling. Harry Potter and the Philosopher’s Stone, volume 1.
Bloomsbury Publishing, London, 1 edition, June 1997.

[47] Martin J. Shepperd, David Bowes, and Tracy Hall. Researcher bias:
The use of machine learning in software defect prediction. IEEE Trans.
Software Eng., 40(6):603–616, 2014.

[48] Apeksha Shewalkar, Deepika Nyavanandi, and Simone A. Ludwig.
Performance evaluation of deep neural networks applied to speech
recognition: Rnn, LSTM and GRU. J. Artif. Intell. Soft Comput. Res.,
9(4):235–245, 2019.

[49] Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. Sequence to sequence
learning with neural networks. In Zoubin Ghahramani, Max Welling,
Corinna Cortes, Neil D. Lawrence, and Kilian Q. Weinberger, editors,
Advances in Neural Information Processing Systems 27: Annual Confer-
ence on Neural Information Processing Systems 2014, December 8-13
2014, Montreal, Quebec, Canada, pages 3104–3112, 2014.

[50] Valerio Terragni, Gunel Jahangirova, Paolo Tonella, and Mauro Pezzè.
Evolutionary improvement of assertion oracles. In Prem Devanbu,
Myra B. Cohen, and Thomas Zimmermann, editors, ESEC/FSE ’20:
28th ACM Joint European Software Engineering Conference and Sym-
posium on the Foundations of Software Engineering, Virtual Event, USA,
November 8-13, 2020, pages 1178–1189. ACM, 2020.

[51] Nikolai Tillmann and Jonathan de Halleux. Pex-white box test genera-
tion for .net. In Bernhard Beckert and Reiner Hähnle, editors, Tests and
Proofs - 2nd International Conference, TAP 2008, Prato, Italy, April
9-11, 2008. Proceedings, volume 4966 of Lecture Notes in Computer
Science, pages 134–153. Springer, 2008.

[52] Michele Tufano, Jevgenija Pantiuchina, Cody Watson, Gabriele Bavota,
and Denys Poshyvanyk. On learning meaningful code changes via neural
machine translation. In Joanne M. Atlee, Tevfik Bultan, and Jon Whittle,
editors, Proceedings of the 41st International Conference on Software
Engineering, ICSE 2019, Montreal, QC, Canada, May 25-31, 2019,
pages 25–36. IEEE / ACM, 2019.

[53] Michele Tufano, Cody Watson, Gabriele Bavota, Massimiliano Di Penta,
Martin White, and Denys Poshyvanyk. An empirical study on learning
bug-fixing patches in the wild via neural machine translation. ACM
Trans. Softw. Eng. Methodol., 28(4):19:1–19:29, 2019.

[54] Michele Tufano, Cody Watson, Gabriele Bavota, Massimiliano Di Penta,
Martin White, and Denys Poshyvanyk. Learning how to mutate source
code from bug-fixes. In 2019 IEEE International Conference on
Software Maintenance and Evolution, ICSME 2019, Cleveland, OH,
USA, September 29 - October 4, 2019, pages 301–312. IEEE, 2019.

[55] Cody Watson, Michele Tufano, Kevin Moran, Gabriele Bavota, and
Denys Poshyvanyk. On learning meaningful assert statements for unit
test cases. In Gregg Rothermel and Doo-Hwan Bae, editors, ICSE ’20:
42nd International Conference on Software Engineering, Seoul, South
Korea, 27 June - 19 July, 2020, pages 1398–1409. ACM, 2020.

[56] Jingxiu Yao and Martin J. Shepperd. Assessing software defection
prediction performance: why using the matthews correlation coefficient
matters. In Jingyue Li, Letizia Jaccheri, Torgeir Dingsøyr, and Ruzanna
Chitchyan, editors, EASE ’20: Evaluation and Assessment in Software
Engineering, Trondheim, Norway, April 15-17, 2020, pages 120–129.
ACM, 2020.

[57] Lingming Zhang, Milos Gligoric, Darko Marinov, and Sarfraz Khurshid.
Operator-based and random mutant selection: Better together. In
Ewen Denney, Tevfik Bultan, and Andreas Zeller, editors, 2013 28th
IEEE/ACM International Conference on Automated Software Engineer-
ing, ASE 2013, Silicon Valley, CA, USA, November 11-15, 2013, pages
92–102. IEEE, 2013.

[58] Lu Zhang, Shan-Shan Hou, Jun-Jue Hu, Tao Xie, and Hong Mei. Is
operator-based mutant selection superior to random mutant selection?
In Jeff Kramer, Judith Bishop, Premkumar T. Devanbu, and Sebastián
Uchitel, editors, Proceedings of the 32nd ACM/IEEE International
Conference on Software Engineering - Volume 1, ICSE 2010, Cape
Town, South Africa, 1-8 May 2010, pages 435–444. ACM, 2010.

634

