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Abstract. Reactive synthesis aims to automatically generate systems7

from high-level formal specifications, but its inherent complexity limits8

its scalability to real-world scenarios. This limitation can be addressed9

by decomposing the specification into independent parts for parallel syn-10

thesis, but the dependency between variables limits this approach.11

At the same time, specifications used in Requirements Engineering (RE)12

often include high-level state machine descriptions, known as modes,13

which structure the specification.14

This paper introduces a novel method for the sequential decomposition of15

reactive synthesis problems based on modes. Our approach automatically16

uses modes to break down a specification into smaller sub-specifications,17

synthesizes each independently, and then integrates the solutions into a18

cohesive global model. We present an algorithm that exploits mode tran-19

sitions and ensures consistency across synthesized components leveraging20

off-the-self reactive synthesis tools.21

We prove the correctness of our approach and show empirically that22

our method significantly improves scalability when decomposing real-23

world specifications, outperforming state-of-the-art monolithic tools. As24

the first sequential decomposition approach, our method offers a promis-25

ing alternative for scalable reactive synthesis.26

1 Introduction27

Reactive systems [47], which continuously interact with their environment, are28

essential in domains like cyber-physical and embedded systems. These systems29

are crucial for tasks such as model checking [19], property monitoring [8], and30

model-based testing [30]. Linear-Time Temporal Logic (LTL) [56] is commonly31

used to specify properties of reactive systems, typically in an assume-guarantee32

format (A → G). Here, Assumptions (A) describe the uncontrollable environ-33

ment and Guarantees (G) define the desired system behavior. This separation34

into environment-controlled and system-controlled variables facilitates effective35

analysis and synthesis [11].36

Reactive synthesis automates the construction of a controller from a spec-37

ification, ensuring that for all valid environment inputs, the controller behaves38

as required. Despite progress in the field, synthesizing controllers for complex39
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specifications remains computationally challenging. Even with efficient LTL frag-40

ments like GR(1) [55,10], deciding realizability and generating a controller can41

lead to exponential blow-ups [38]. Several decomposition techniques have been42

proposed [27,43,7,20,52] which try to perform synthesis independently for differ-43

ent variables, but these methods face difficulties when sub-specifications share44

controllable variables. Requirements Engineering (RE) methodologies provide45

useful mechanisms to modularize and specify the system behavior. A typical46

way to organize system requirements is through the use of high-level state ma-47

chine descriptions in which the states, referred to as modes, encapsulate specific48

system behavior under particular situations and transitions represent how the49

system execution evolves and react to environmental events [37].50

Mode-based synthesis leverages these modes to synthesize complex systems by51

decomposing global specifications into sub-specifications for individual modes.52

However, the existing approach [13] requires manual intervention, limiting their53

automation. In this work, we build upon these ideas to fully automate the mode-54

based synthesis process, eliminating the need for manual engineering input. Our55

approach takes as input the system’s global specification, a description of its56

modes, and optionally, the transitions between them. Through a process we call57

sequential decomposition, the synthesis problem is addressed incrementally: each58

sub-problem is solved independently, focusing on one mode at a time. A key59

aspect of our method is the treatment of initial conditions for each mode. These60

conditions ensure coherence between sub-specifications and the global one, facili-61

tating seamless connections across modes. By maintaining alignment with global62

requirements, our method guarantees consistency across mode transitions, min-63

imizing potential conflicts and ensuring the system’s correctness. We formalize64

mode projection and mode-based synthesis, proving consistency between modes65

and the global system. Crucially, our approach computes initial conditions en-66

suring that if each sub-specification is realizable, then the global specification is67

also realizable. The resulting structured controllers enhance transparency and in-68

terpretability while improving synthesis scalability, as shown empirically against69

state-of-the-art monolithic tools. The paper is organized as follows: Section 270

covers preliminaries, Section 3 details our approach, Section 4 presents empiri-71

cal results, and Section 5 concludes.72

Related Work. Reactive synthesis [57,10] aims to automatically generate correct-73

by-construction controllers from temporal logic specifications. LTL synthesis is74

2EXPTIME-complete [57], tractable fragments like GR(1) enable polynomial-time75

synthesis [10]. However, challenges remain, particularly in constructing determin-76

istic automata for large Safety-LTL formulas [70]. Compositional approaches im-77

prove scalability by decomposing synthesis tasks [60,57]. Dureja and Rozier [25]78

reduce model-checking tasks via dependency analysis, while Finkbeiner et al. [29]79

extend this idea to synthesis by focusing on controllable variables. However,80

these simultaneous decomposition methods, which address the synthesis problem81

in parallel, struggle when requirements share many controlled variables, limit-82

ing their applicability [39,29,51]. In RE, high-level state machines, or modes,83
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are commonly used to structure system specifications [33,64,65,59,4]. Languages84

like EARS [50], SCR [36,35], TLSF [40], SPIDER [41], NASA’s FRET [31],85

and Spectra [48] leverage modes for organizing computation and requirements.86

This aligns with IEEE standard 29148, which notes that “some systems behave87

quite differently depending on the mode of operation. For example, a control88

system may have different features depending on its mode: training, normal, or89

emergency.” [1]. State-based techniques like Statecharts [34], Broy’s hierarchi-90

cal service modeling [15], and the SCR method further formalize mode-based91

specifications. Feature modeling [24,61] and safety analysis methods like FTA92

and FMEA [44,2] also utilize modes. However, translating these mode-based93

specifications into LTL can increase complexity, hindering simultaneous meth-94

ods methods. For example, NASA’s FRET, which heavily uses state variables95

(modes), poses challenges for decomposition tools, leading to issues like false96

positives [51] and goal conflicts [21,16,12,22,49,11]. This motivates the need for97

more efficient synthesis approaches in real-world applications. Recent RE re-98

search explores using Large Language Models (LLMs) for requirements specifica-99

tion [67,5,54,69,68,66]. LLMs, like GPT series [14,53], LaMDA [62], LLaMa [63],100

PaLM [18], and BERT [23], can assist in articulating mode-based requirements,101

potentially simplifying translation to LTL [45,3]. Related to us, Balkan et al. [6]102

use modes in a GR(1) subfragment for control design of continuous systems,103

focusing on quantitative performance. This contrasts with our focus on discrete104

systems and logical correctness in reactive synthesis. More directly, Brizzio et105

al. [13] proposed a mode-based decomposition for a fragment of safety, but re-106

quire manual specification of initial conditions, which is tedious, error-prone, and107

deviates from standard RE practices. In contrast, our novel mode-based synthesis108

automatically generates initial conditions, ensuring consistency and eliminating109

manual intervention. Unlike simultaneous decomposition, we employ a sequen-110

tial approach. By addressing one sub-problem at a time and leveraging natural111

mode transitions, our sequential method simplifies synthesis, reduces potential112

conflicts, and inherently ensures consistency. To the best of our knowledge, this113

is the first fully automated sequential mode-based synthesis method.114

2 Preliminaries115

LTL is a logical formalism widely used to specify reactive systems [56,46]. Given a116

set of propositional variables AP, LTL formulas are defined using standard logical117

connectives and the temporal operators  (next) and U (until) as follows:118

φ ::= true
∣∣ a ∈ AP

∣∣ φ ∨ φ ∣∣¬φ ∣∣φ ∣∣ φ U φ
Other common operators, such as false, ∧ (and),  (always), and → (implies),119

can be derived: ϕ∧ψ ≡ ¬(¬ϕ∨¬ψ), ϕ ≡ ¬(trueU ¬ϕ), and ϕ→ ψ ≡ ¬ϕ∨ψ.120

Given an LTL formula φ, Vars(φ) ⊆ AP denotes the set of atomic propositions121

used in φ. The semantics of LTL associate traces σ ∈ Σω with formulae as122
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follows (we omit the Boolean operators which are standard):123

σ ⊨ a iff a ∈ σ(0)
σ ⊨ φ iff σ1 ⊨ φ
σ ⊨ φ1 U φ2 iff for some i ≥ 0 σi ⊨ φ2, and for all 0 ≤ j < i, σj ⊨ φ1

where σ(i) is the i-th letter of σ, and σi ∈ Σω is its suffix starting at the i-th124

position. Given L ⊆ Σω and a formula φ, we use L ⊨ φ if for all σ ∈ L, σ ⊨ φ.125

A Syntactic Fragment of Safety-LTL. We focus on a fragment of LTL126

(Safety-LTL) [70] commonly used in requirement engineering. LTLG consists of127

formulas of the form ψ ∧ φ, where ψ is propositional and φ ∈ LTLX (which128

uses only the  operator). LTLG is widely used in industrial safety specifica-129

tions [17,28,32]. Specifically, we work with GX0 [13], a sub-fragment of Safety-130

LTL defined as α → (β ∧ ψ), where α, β, and ψ are conjunctions in LTLX .131

This fragment extends LTLG, still expresses safety properties, and is supported132

by tools like Strix [52]. A reactive specification φ = (A,G) consists of A = (θe, φe)133

and G = (θs, φs), where θ{e,s} represent initial conditions for the environment134

and system, respectively, and φ{e,s} are the assumptions and guarantees. Like135

previous works [29,51] that restrict their methods to LTL fragments for effi-136

ciency, we simplify our approach by using propositional formulas over Vars(φ)137

for A to ensure a consistent environment during decomposition, avoiding inter-138

ference that leads to false-negatives [51], and employ G ∈ LTLX for guarantees.139

Thus, the intended meaning of φ is the GX0 formula: (θe → (θs ∧(φe → φs)))140

Reactive Synthesis. Reactive LTL synthesis [57] is the problem of auto-141

matically constructing a system that reacts to the environment guaranteeing142

an LTL specification φ. The propositions Vars(φ) are partitioned into X ∪ Y,143

where X are environment-controlled variables and Y are system-controlled vari-144

ables. A system strategy for φ is a function ρ : (2X )+ → 2Y mapping fi-145

nite sequences of X valuations to Y valuations. Given an infinite sequence146

X = X1, X2, . . . ∈ (2X )ω, the play induced by strategy ρ is the infinite sequence147

σρ,X = (X1 ∪ ρ(X1))(X2 ∪ ρ(X1, X2)) . . . We use L(ρ) = {σρ,X | X ∈ (2X )ω} for148

the set of plays played according to ρ. A play σ is winning if σ ⊨ φ. A strategy149

is winning if L(ρ) ⊨ φ. Realizability is the problem of deciding if a specification150

has a winning strategy, and synthesis is the problem of computing one.151

3 Mode-Based Synthesis for GX0152

We now describe our mode-based reactive synthesis method for GX0 specifica-153

tions, beginning with some preliminary definitions. A mode m for a GX0 for-154

mula φ is a predicate over Vars(φ) describing a set of system states. A set of155

modes M = {m0, . . . ,mk} is valid for φ if (1) modes are mutually exclusive156

(mi,mj ∈M with i ̸= j, mi∧mj is unsatisfiable) and (2) they cover all possible157

states (
∨k

i=0mi is valid). A mode-transition from m to a different mode n in a158
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trace σ occurs at index i if σ(i) ⊨ m and σ(i + 1) ⊨ n. A mode transition from159

m to n occurs under a strategy ρ if it occurs in some trace σ ∈ L(ρ).160

Definition 1 (Mode-Graph). A mode-graph is a directed graph G = (M,≺),161

where M = {m0,m1, . . . ,mk} is a set of modes, and ≺⊆M ×M is irreflexive.162

The intended meaning of ≺ is to restrict the search of strategies to those where163

mode-transitions are included in ≺. In a complete mode graph, ≺= {(m,n) | m,n ∈164

M,m ̸= n} includes all possible strategies. In RE, it is common to specify modes165

and mode-transitions as part of the requirements, as discussed in Section 1 and 2.166

3.1 Basic Mode-Based Synthesis with Initial Conditions167

Given a mode m ∈ M and a set of guarantees φs in a GX0 specification φ, the168

following function reduce projects a new set of guarantees specific to mode m:169

reduce(ψ,m) =



true, if (m ∧ ¬ψ) ⊨ false (1)

false, if (m ∧ ψ) ⊨ false (2)

Simpl(reduce(ψ1,m) • reduce(ψ2,m)), if ¬(1 ∨ 2) ∧ ψ = ψ1 • ψ2

with • ∈ {∧,∨,→}
Simpl(¬reduce(ψ′,m)), if ψ = ¬ψ′

Simpl(reduce(ψ′,m)), if ψ = ψ′

Simpl(reduce(ψ′,m)), if ψ = ψ′

ψ, otherwise

Given φs, reduce (φs,m) projects 1 the set of guarantees φs on mode m. We170

use Simpl(ψ) for a function that applies standard Boolean simplifications, like171

(x ∧ true) 7→ x, etc. The reduced specification for mode m is denoted φm.172

Example 1. Consider the following GX0 specification φ and modes m1 and m2:173

G1G1G1 : (e1 → (m1 → s1)), G2G2G2 : (m2 → (¬s3∨m1)), G3G3G3 : (¬m2 → s3)

Applying reduce (φ,m1) results in:174

G1G1G1 : (e1 → s1), G2G2G2 : true, G3G3G3 : s3

G2G2G2 simplifies to true, and G3G3G3 simplifies to s3 after replacing m2 with false.175

The key-stone of mode-based synthesis is that one can focus on simplified spec-176

ifications for each of the given modes independently—which improves the scal-177

ability of off-the-shelf reactive synthesis tools. However, during an execution, a178

system can transition between different modes. In these transitions, the system179

may leave the satisfaction of sub-formulas pending for the arriving modes. We180

call these sub-formulas pending obligations. The following definition captures a181

subset of them that a mode may leave pending for a successor mode.182

Definition 2 (Pending Obligations). The set of (potential) pending obliga-183

tions for mode mi is Op(mi) = {ψ | ψ ∈ subformulas(φmi
)} .184

1 Throughout the paper, we use “reduced spec.” and “projection” interchangebly.
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Cumulative Obligations. Cumulative obligations, denoted Oc(mj), repre-185

sent the obligations a mode mj inherits from its predecessors during transi-186

tions. They ensure that all pending requirements are satisfied throughout the187

system. A straightforward, though imprecise, method to compute them is by ag-188

gregating obligations from all predecessors. Formally, for a mode mj : Oc(mj) =189 ⋃
mi≺mj

Op(mi). The concept of cumulative obligations is illustrated in the fol-190

lowing example.191

Example 2. Consider a mode-graph with M = {m1m2,m3} and m1 ≺ m2,192

m2 ≺ m3 and m3 ≺ m1. Let e1 and e2 be environment-controlled variables, with193

the system controlling {s1, s2, s3, s4,m1,m2,m3}. The specification is:194

G1G1G1 : (e1 → (m1 → (m2 ∧s2))) G2G2G2 : (e2 → (¬m3 → (¬s3 ∨ s1)))
G3G3G3 : (¬e1 → (m2 → (m3 ∧ s4))) G4G4G4 : (m3 → (m1 ∧ s1))

The reduced specifications for modes m1, m2, and m3 are φm1
= G1G1G1 ∧ G2G2G2,195

φm2
= G2G2G2 ∧G3G3G3, and φm3

= G4G4G4. When the system transitions from m1 to m2196

while e1 holds, mode m2 must fulfill the pending obligation s2. The exact197

obligations, however, depend on the order of events. If e2 occurs before e1, the198

system must satisfy both ¬s3 ∨ s1 and s2. On the other hand, if e1 occurs199

before e2, or if both hold simultaneously, the system must satisfy (¬s3 ∨ s1)200

along with s2. If the system is in mode m2 and e1 does not hold, the system201

transitions tom3 leaving the pending obligationm3∧s4. The pending obligations202

for m1, m2 and m3 are:203

Op(m1) = {m2,s2, s2,(¬s3 ∨ s1),¬s3 ∨ s1}
Op(m2) = {(¬s3 ∨ s1),¬s3 ∨ s1,m3 ∧ s4} Op(m3) = {m1 ∧ s1}

From this, the cumulative obligations are: Oc(m1) = Op(m3); Oc(m2) = Op(m1);204

Oc(m3) = Op(m2).205

However, as mentioned before, this simple aggregation is imprecise and can lead206

to incorrect results. It fails to capture interactions between obligations arising207

from mode transitions in execution paths as demonstrated in the following ex-208

ample.209

Example 3. Consider a specification with the following guarantees:210

G1G1G1 : (m1 → m2) G2G2G2 : (m2 → m1)
G3G3G3 : (m1 → p) G4G4G4 : (m1 → p)

Here, Op(m1) includes {m2,p, p}, while Op(m2) only contains {m1} because211

φm2 retains only G2G2G2. If we propagate obligations naively without accounting212

for mode interactions, Oc(m1) might incorrectly focus on satisfying only m1,213

neglecting the obligation to satisfy p. This error occurs because G2G2G2 forces m2 to214

transition back to m1 after just one step, leaving p—which originates from the215

obligation p that m1 transferred to m2—unsatisfied. Such propagation would216

compromise the correctness of the specification leading to false negatives.217
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Algorithm 1: Fixpoint Algorithm for Cumulative Obligations.

1 Input: φ = (A, (θs, φs)), G = (M,≺)
2 for mj ∈M do
3 Oc[mj ]←

⋃
mi≺mj

(obligations(reduce(φs,mi)) ∪ obligations(reduce(θs,mi)))

4 changed← true
5 while changed do
6 changed← false
7 for (mi,mj) ∈≺ do
8 for u ∈

⋃
kp∈Oc[mi]

{k−1p,k−2p, . . . , p} do

9 if u ̸∈ Oc[mj ] then
10 Oc[mj ]← Oc[mj ] ∪ {u} ; changed← true
11 return Oc

To address these challenges, Alg. 1 systematically computes all cumulative obli-218

gations that a mode may need to satisfy, ensuring the global specification is219

correctly enforced across transitions. This algorithm iterates until a stable set of220

obligations is computed. Given a valid set of modes M = {m0, . . . ,mk}, the cu-221

mulative obligations Oc(mi) for each mi ∈M are the conditions that mi may be222

forced to satisfy based on the pending obligations inherited from all its predeces-223

sors. Each Oc(mi) is computed using Alg. 1. Revisiting Ex. 3, Alg.1 iteratively224

determines that when transitioning from m2 to m1, m1 must satisfy both p and225

itself, resulting in Oc(m1) = {p,m1}. We refer to the set O =
⋃

mi∈M Oc(mi)226

as the universe of obligations across different modes. To systematically explore227

the universe of obligations, we introduce obligation variables that encode each228

element within this universe, encoding whether the corresponding obligation is229

considered. We introduce a fresh variable viφ for each formula φ ∈ O. We230

use v(φ) for the variable corresponding to φ. While Alg. 1 performs the correct231

propagation of obligations, the set of obligations computed is a superset of the232

obligations that a mode may be requested to fulfill. Asking an instance of a mode233

to satisfy a larger subset of the cumulative obligations makes the instance more234

difficult to be realizable, while it helps predecessor instances to be realizable. The235

concept of initial condition captures this notion of combination of obligations.236

Definition 3 (Initial Conditions). Given a mode mi ∈ M , the set of initial237

conditions I(mi) is the set of all possible conjunctions of subsets of cumulative238

obligations:239

I(mi) =

 ∧
ϕ∈S∪{true}

ϕ

∣∣∣∣∣∣ S ⊆ Oc(mi)


Example 4. Consider Oc(m1) = {q,r} and Oc(m2) = {s}. The initial con-240

ditions are: I(m1) = {q ∧r,q,r, true} and I(m2) = {s, true}. 2
241

2 Each x ∈ I(mi) is conjoined with mi. For readability, it is omitted from the text.



8 Brizzio et al.

Algorithm 2: Sequential Decomposition.

1 Input: φ = (A, (θs, φs)), Θ = {θs0 , . . . , θsn}, G = (M,≺), O
2 Osorted = sortBySize(O, ↓) ; θ′si ← true
3 for ψ ∈ θs do
4 ψ′ ← ψ[f\v(f)] for all f ∈ Osorted

5 θ′si ← θ′si ∧ ψ
′

6 for mi ∈M do
7 φ′

s ← reduce(φs,mi) ; φR
mi
← true

8 for ψ ∈ φ′
s do

9 ψ′ ← ψ[f\v(f)] for all f ∈ Osorted

10 φR
mi
← φR

mi
∧ (¬done→ ψ′)

11 for kp ∈ Osorted do
12 if k = 1 then φR

mi
← φR

mi
∧ ((¬done ∧ v(p))→ (¬done→ p)) ;

13 else φR
mi
← φR

mi
∧ ((¬done ∧ v(kp))→ (¬done→ v(k−1p))) ;

14 for (mi,mj) ∈≺, and kp ∈ Osorted and θsj ∈ Θ do
15 if (θsj ∧ ¬v(k−1p)) is sat then φR

mi
← φR

mi
∧ (jumpj → ¬v(k−1p)) ;

16 φR
mi
← φR

mi
∧ ((

∨
(mi,mj)∈≺ jumpj)→ done)

17 φR
mi
← φR

mi
∧ ((¬

∨
(mi,mj)∈≺ jumpj)→ (¬done→ ¬done))

18 Π[i]← (A, (θ′si , φ
R
mi

))

19 return Π

Given a mode-graph G, a set of valid modes M = {m1, . . . ,mk}, and a GX0242

specification φ = (A,G), the mode-based synthesis method consists of generating243

a set of projections, Π = {(θe1 , θs1 , φR
m1

3), . . . , (θek , θsk , φ
R
mk

)} such that all are244

realizable, and can be composed into a strategy for the original specification.245

This process must satisfy the following objectives:246

I) Ensure that each projection (θei , θsi , φ
R
mi

) ∈ Π is realizable. Even though the247

local strategy generated is infinite, it could decide to jump into a successor248

node and move into a winning sink state.249

II) For each mi ≺ mj the successor mode mj must satisfy the obligations inher-250

ited from its predecessor mi, denoted as Op(mi) ∩ Oc(mj). The connection251

between projections is managed through the initial condition θsj ∈ I(mj) of252

the successor mj . Formally, for all mi ≺ mj , θsj =⇒
∧
(Op(mi)∩Oc(mj)).253

This ensures that a transition from mi to mj is valid only if mj satisfies254

the pending obligations of mode mi, ensuring the correct connection and255

composition of projections for sequential decomposition.256

III) In the absence of a specific ≺ provided in G, the complete graph is used.257

Alg. 2 adapted from [13], outlines the mode-based synthesis approach. The al-258

gorithm generates a projection φR
mi

for each mode mi, ensuring consistency with259

manually provided initial conditions (as required in point (II )). To demon-260

strate the method, consider the specification ψ in Fig. 1. Due to its complexity261

and the number of variables, traditional synthesis tools often struggle with spec-262

3 We explain what the notation φR
mi

means below
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ifications like this. Assume that each mode corresponds to a unique counter263

value. For instance, in mode m20 (i.e., counter=20 ), the approach projects the264

global specification onto m20 relying on manually specified initial conditions.265

Alg. 2 ensures that the projection φmR
20

, along with others, is consistent with the266

global specification ψ. A reduced version of this projection is shown in Fig. 2.267

Transitions between modes are modeled using fresh variables jump (indicat-268

ing a transition to a successor mode) and done (indicating that the game for269

the current mode is completed due to a transition). A transition is allowed270

only if the initial condition of the successor mode satisfies the obligations at271

the time of the jump. This guarantees that strategies for different modes are272

properly connected. Although Alg. 2 significantly improves synthesis speed, it273

introduces two limitations: (1) Each mode is associated with a single initial274

condition, and (2) these initial conditions must be manually specified. To ad-275

dress (1), Alg. 2 can be modified to iterate over a set of sets of possible initial276

conditions Θ = {{θ1si , . . . , θ
k
si}, {θ

1
sj , . . . , θ

k
sj}, . . .}, updating the jump variable to277

jumpi
j for different initial conditions. However, (2) remains a significant challenge278

1 env boolean reset , start;
2 sys Int (20) counter; sys Int (1) jump
3 sys boolean trigger , done , o_1;
4
5 asm G !(reset and start);
6 gar (counter =20 and !done);
7 gar G (!done -> trigger);
8 gar G (!done -> counter =20 -> o_1);
9 gar G (!done -> reset -> o_1);

10 gar G (!done and o_1 -> next(done))
11 gar G (jump=1 -> next(done));
12 gar G (done -> next(done));

Fig. 2: Reduced specification.

due to the considerable manual ef-279

fort required to compute initial con-280

ditions. To address this, we propose281

here a method for automatic mode-282

based synthesis, which eliminates the283

need for manual specification by auto-284

matically computing initial conditions285

for each projection. Alg 2 then gener-286

ates projections using these automat-287

ically computed initial conditions Θ,288

ensuring realizability and consistency.289

1 env boolean reset , start;
2 sys Int (1..20) counter; sys boolean trigger;
3 // Start and reset are not initially pressed
4 asm (!reset and !start);
5 // Only reset or start can be active at a time
6 asm G !(reset and start);
7 // Counter is initially at the lowest value
8 gar counter =1;
9 // Restart signal always reset the count

10 gar G (reset -> next(counter =1) );
11 // Always stay at the same number or increase it
12 gar G ( (counter =1 and start) -> next(counter =2 or reset) );
13 gar G ( (counter =2 and !reset) -> next(counter =3 or reset) );
14 ...
15 gar G ( (counter =19 and !reset) -> next(counter =20 or reset) );
16 // Only trigger a signal if the bound is reached.
17 gar G (counter =20 <-> trigger);
18 // Reach the limit and start again
19 gar G (counter =20 -> next(counter =1));

Fig. 1: Counter machine example written in Spectra.
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3.2 A Fixpoint Search Method for Initial Conditions290

We propose now an automatic mode-based synthesis method that removes the291

requirement for manual encoding of initial conditions. The challenge is to dis-292

cover a collection of feasible initial conditions for each mode.293

We consider instances of a mode mj for each active initial condition θsj , to294

support the realizability of predecessors mi. Verifying the realizability of the pair295

(θsj , φ
R
mj

) is the main activity, which in turn depends on the active instances of296

successor modes. This complex circular dependencies between modes and initial297

conditions requires efficient exploration of the possible instantiations of the mode298

graph. We solve this problem with a fixpoint search technique that efficiently299

explores the space of instantiations.300

Universe Representation. We start by capturing the representation of the301

set of possible instantiations.302

Definition 4 (Mode Instance Graph). Given a set of modes M , a universe303

of initial conditions I(m) for each mode m, and a mode graph G = (M,≺), a304

Mode Instance Graph (MIG) is a graph (V, 7→), where:305

– V ⊆ {(m, c) | m ∈M and c ∈ I(m)} ∧ V ̸= ∅306

– 7→= {((mi, cj), (mk, cl)) | (mi, cj) ∈ V, (mk, cl) ∈ V and mi ≺ mk)}307

In a mode instance graph, each mode is instantiated with possibly many initial308

conditions, which are connected to every instance of its successor nodes.309

For example, consider a mode-graph with three modes m0, m1, and m2 and310

m0 ≺ m1 ≺ m2 ≺ m0. Assume each mode has five possible initial conditions,311

(m0, c1)

(m0, c2)

(m0, c3)

(m0, c4)

(m0, c5)

(m1, c1)

(m1, c2)

(m1, c3)

(m1, c4)

(m1, c5)

(m2, c1)

(m2, c2)

(m2, c3)

(m2, c4)

(m2, c5)

(m0, c1)

(m0, c2)

(m0, c3)

(m0, c4)

(m0, c5)

denoted as (mi, ck). The candidate initial con-312

ditions ck for each mode mi are determined313

by I(mi), which includes all possible subsets314

of the cumulative obligations for that mode315

(see Def. 3). The universe of exploration in316

the diagram on the left illustrates the MIG317

for this simplified example. Our approach sys-318

tematically evaluates each configuration to en-319

sure that all projections meet the realizability320

requirements. Informally, our method iterates321

through the MIG to find a proof of realizabil-322

ity for the specification φ, pruning the search space as proofs of realizability are323

found. Formally:324

Definition 5 (Realizability Proof). Given an MIG = (V, 7→), a proof of325

realizability is a subgraph R = (V ′, 7→′), where V ′ ⊆ V and 7→′⊆7→, such that326

for every pair (m, c) ∈ V ′, (c ∧(φR
m)) is realizable.327

Alg. 3 presents our solution, which systematically searches for subsets of the328

initial conditions, one for each node, aiming to find a realizability proof. The329

search begins with a candidate proof by creating the MIG that contains all330
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Algorithm 3: Search for Init. Cond.
1 Input: φ = (A, (θs, φs)), G, M = {m0, . . . ,mn}
2 Oc ← Alg 1(φ,M,G) ; O ←

⋃
m∈M O

c[m]
3 for m ∈ {m0..mn} do Θ[m]←

∧
ϕ∈S∪{true} ϕ | S ⊆ O

c[m] ;
4 MIG← createMIG(G, I)
5 do
6 initial← false ; finished← true
7 for m ∈ {m0..mn} do
8 for each candidate θ ∈ Θ[m] do
9 (A, (θ, φR

m))← Alg 2((A, (θ, φs)), Θ,M [m],G,O)
10 if realizable(A, (θ, φR

m)) then
11 if m = m0 then initial← true;
12 else
13 finished← false
14 MIG←MIG \ (m, θ)
15 Θ[m]← Θ[m] \ θ
16 while ¬finished ∧ ¬initial;
17 return MIG

modes and their initial conditions. The algorithm proceeds in rounds, where at331

each round all remaining instance modes are checked for realizability. Every re-332

alizable instance is kept, otherwise (if no successor instantiated with some initial333

condition can support its realizability), the instance mode is deemed unrealizable334

and removed. The process iterates until a fixpoint is reached (i.e., a full round is335

passed with all remaining modes realizable). If all projections are realizable at336

the fixpoint, the resulting graph is a realizability proof R; otherwise, it is empty.337

A minimal modification of Alg. 3, allows us to bypass many realizability338

checks by inferring results based on previous checks in the same iteration, using339

memoization [9]. For instance, if a mode with candidate initial condition p ∧ q340

is realizable, the same mode will also be realizable for initial conditions p, q and341

true. Conversely, if p is unrealizable, all initial conditions that imply p are also342

unrealizable. For example, in our case study (Fig. 1), m1 spans from 1 to 10,343

while m2 spans from 11 to 20. Our algorithm efficiently computes the initial344

conditions as follows: for m1, it deduces the initial condition θ1 = counter=1,345

and for m2, it derives the initial condition θ2 = counter=11. These results align346

with those manually derived in [13].347

3.3 Correctness348

This section establishes the soundness of the mode-based synthesis algorithm.349

We begin by stating a previously established result.350

Theorem 1 (Soundness of Alg. 2 [13]). Given a specification φ, a mode-351

graph G, and a set of initial conditions I, if all projections are realizable, then352

φ is realizable.353
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The following theorem formalizes the soundness of Algorithm 3.354

Theorem 2. If Algorithm 3 returns a realizability proof R, then φ is realizable.355

Proof (sketch). We proceed by induction on the length of the environment se-356

quence X1, . . . , Xi. The algorithm constructs a Realizability Proof, where each357

mode mi is associated with a set of possible initial conditions I(mi) ensuring358

realizability of the projection φR
mi

. We construct a global winning strategy by359

composing local winning strategies for each instance.360

– Base case: For the initial environment valuation X1, the system starts361

in mode m0. The algorithm checks the realizability of φR
m0

for each initial362

condition in I(m0). We can use a winning strategy for φm0
which provides363

a winning move in the first step.364

– Inductive step: Assume that for the environment sequence X1, . . . , Xi−1,365

all projections φR
mi′

for i′ < i are realizable for at least one initial condition366

in I(mi′). Now consider the next input Xi and the mode mi. The algorithm367

has checked the realizability of φR
mi

for each initial condition in I(mi). There368

are two cases to consider:369

1. The system remains in mode mi. In this case, following the strategy for370

the corresponding instance of mode mi is winning for one step, so the371

specification is not violated at step i+ 1.372

2. The system transitions to a new mode mj. A transition from mode mi to373

mode mj is allowed only if mode mj satisfies the cumulative obligations374

inherited from mi. This is ensured by an initial condition θsj ∈ I(mj)375

that satisfies the pending obligations from mi (i.e., Op(mi) ∩ Oc(mj)).376

The combined strategy moves to such an initial state.377

Therefore, for all steps, the combined strategy satisfies the specification. ⊓⊔

Thm. 2 establishes soundness but not completeness. Mode-based decomposition378

forces the system to choose the next mode based solely on the current history,379

disregarding the next environment input. This can lead to false negatives. Con-380

sider the specification (m1 → (e∨m2)), where m1,m2 are modes and e is an381

environment input. This requires that if the system is in m1, then in the next382

step, either e is true or the system transitions to m2. Our approach must decide383

on the transition to m2 before observing e. A winning strategy might depend384

on e: stay in m1 if e is true, and transition to m2 otherwise. For instance, if e385

alternates, a winning strategy is to stay in m1 while e is true and move to m2386

when e is false. Our method, however, must choose between always staying in387

m1 (violating the spec when e is false) or always transitioning to m2 (unneces-388

sarily when e is true), incorrectly reporting unrealizability. This demonstrates389

that premature decision-making can lead to false negatives. To mitigate incom-390

pleteness, we define a sufficient condition: mode-determinism, ensuring that the391

current variable valuation uniquely determines the next mode without violating392

the specification. For a GX0 formula ψ 4 with variables z = Vars(ψ) = X ∪Y,393

let φ(z, z′) be the relation between pre- and post-state variables satisfying φ.394

4 Nested  operators in ψ are handled by introducing fresh variables vα ⇐⇒ α.
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Definition 6 (Mode-deterministic). A specification ψ with z = Vars(ψ)395

is mode-deterministic if there are no modes m1, m2 and m3, m2 ̸= m3 s.t.:396

∃z, z2, z3.
(
m1(z) ∧ (ψ(z, z2) ∧ m2(z2)) ∧ (ψ(z, z3) ∧ m3(z3))

)
.

This condition ensures that no state in m1 can transition simultaneously to m2397

and m3. Mode-determinism can be verified using k3 SAT queries, where k is the398

number of modes. For a mode-deterministic specification φ the feasible mode399

jumps J(φ) ⊆M ×M are defined as: (mi,mj) ∈ J if: ∃z, z′.
(
mi(z) ∧ ψ(z, z′) ∧400

mj(z
′)
)

This captures possible mode transitions within a φ trace.401

Theorem 3. Let φ be a mode-deterministic specification and (M,≺) a mode-402

graph such that J(φ) ⊆≺. Then, if the mode-based synthesis algorithm returns403

unrealizable, φ is unrealizable.404

It is always possible to choose a proper ≺ either by computing J(φ) or by using405

the complete mode-graph.406

4 Empirical Evaluation407

We evaluate our approach around the following research questions:408

RQ1: How effectively does our method compute initial conditions?409

RQ2: Does our mode-based technique improve controller synthesis time com-410

pared to traditional methods?411

RQ3: How well does our heuristic prune the search space?412

Spec. #A−#G #M
counter(n) 2-(n+5) 2,4,7
sis-1500 2-7 3
thermostat(n) 3-4 3
cruise-fse 3-15 4
altlayer(n) 1-9 3
lift(n) 1-187 3
fret-lift 2-14 4
double-counter(n) 2-(2n + 5) 2,4,7

Table 1: Specs and Modes.

Specifications. For our evaluation, we413

use benchmarks from [13] alongside new414

specifications from recent work [58,49],415

written in languages like Spectra and416

FRET. Additionally, we introduce goal-417

conflicts and adapt each specification to418

mode-based determinism 5 making them419

unrealizable to test whether our method420

correctly identifies those scenarios. Table 1421

summarizes the specifications, including422

assumptions (#A), guarantees (#G), and modes (#M).423

Setting and Evaluation. We implemented our approach in Java, leveraging424

the widely-used OwL library [42] for parsing and manipulating LTL formulas. For425

verifying realizability, we used Strix [52]. The experiments were conducted on426

a cluster featuring Intel Xeon processors clocked at 2.6GHz and equipped with427

16GB of RAM, running GNU/Linux. Our tool, case studies, and instructions for428

replicating the experiments are in our replication package 6.429

5 using SCR methodology [35]
6 https://sites.google.com/view/mode-decomposition

https://sites.google.com/view/mode-decomposition
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Specifications Time (s) #Strix Detailed time (fp)

Name. #M Mon. fp fph fp fph Proj. Strix

counter-10 2 8 0.56 0.49 2 2 0.41 0.15
counter-14 7 timeout 1.23 1.31 7 7 0.82 0.41
counter-20 4 timeout 1.01 1.06 4 3 0.80 0.27
lift-15 3 timeout 4.03 4.00 5 4 3.44 0.59
sis-1500 3 timeout 46.40 43.00 3 2 42.84 3.92
double-counter-10 2 6 0.80 0.73 3 3 0.60 0.20
double-counter-14 7 125 3.23 2.96 13 10 2.23 1.00
double-counter-20 4 timeout 2.62 2.56 7 5 2.14 0.48
cruise-fse 4 timeout 65.37 63.89 11 9 45.86 19.51
altlayer 3 timeout 18.13 18.52 4 4 15.83 2.30
fret-lift 4 timeout 27.48 27.12 4 4 21.80 5.68
thermostat-80 3 60 29.64 29.66 3 2 27.40 2.24
thermostat-150 3 error 60.53 55.41 3 2 52.68 7.85

Table 2: All experimental results (Realizable cases).

Effectiveness and Performance Evaluation. We evaluated three approaches:430

the monolithic method (mon), our fixpoint method (fp), and our memoization [9]431

fixpoint method (fph). Both fp and fph consistently outperformed the monolithic432

approach across various specifications (see Table 2). Moreover, the time distribu-433

tion shows that Strix time is significantly lower than the projection time (Proj ).434

In our corpus, particularly in SCR specifications from requirements engi-435

neering, candidates are often mutually exclusive, limiting memoization’s effec-436

tiveness. While it does not bypass many realizability checks, it still moderately437

reduces the total number of solver calls. For more complex specifications with438

larger search spaces and well-defined lattice structures, memoization becomes439

significantly more effective. By leveraging the fact that unrealizable formulas440

have unrealizable supersets, and realizable formulas have realizable subsets, our441

approach propagates results across the lattice, pruning the search space and442

minimizing solver calls. Tests on randomly generated formulas using Spot [26]443

show that our memoization approach can cut solver calls by up to 50%, lead-444

ing to faster execution times. This demonstrates the potential of our approach445

for efficiently handling intricate specifications in mode-based synthesis. Addi-446

tionally, in the context of unrealizable cases following mode-based deterministic447

specifications (see Table 3), we observed the same trends as in realizable cases.448

This consistency further underscores the robustness and reliability of our method449

across both realizable and unrealizable scenarios.450

Impact on Synthesis Time. Our comparative analysis revealed significant451

differences in synthesis time between the approaches. The monolithic method452

consistently reached the ten-minute timeout on larger instances, with some cases453

failing due to the size of the formulas. In contrast, both fp and fph completed454

synthesis well within the time limits, reducing synthesis time by over 90%.455
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Specifications Time (s) #Strix Detailed Time (fph)

Name #M Mon fp fph fp fph Proj. Strix

counter-10 2 8 0.61 0.59 3 2 0.39 0.20
counter-14 7 timeout 4.33 2.66 21 16 1.69 0.98
counter-20 4 timeout 2.237 4.60 11 10 3.28 1.33
lift-15 3 timeout 6.92 10.93 9 7 9.50 1.44
sis-1500 3 timeout 44.72 58.19 3 3 53.58 4.62
double-counter-10 2 13 1.28 1.83 7 7 1.14 0.61
double-counter-14 7 timeout 2.52 3.18 13 10 2.32 0.84
double-counter-20 4 timeout 6.83 9.60 23 19 7.75 1.84
cru-fse 4 timeout 99.83 134.72 23 18 101.42 33.30
altlayer 3 timeout 65.40 65.45 11 10 57.77 7.68
fret-lift 4 timeout 79.80 81.80 10 10 64.18 17.61
thermostat-80 3 74 110.67 100.84 9 7 94.20 6.64
thermostat-150 3 error 193.17 185.69 9 6 173.87 11.83

Table 3: All experimental results (Unrealizable cases). All cases executed using
mode-determinism.

Moreover, our techniques complement state-of-the-art decomposition tools,456

none of which [39,29] could handle the specifications in our corpus. Frequent use457

of state variables or modes posed significant challenges for these tools, as noted458

by Mavridou et al. [51]. Our mode-based approaches, however, excelled in these459

environments, demonstrating adaptability and effectiveness where traditional460

methods fall short.461

5 Conclusion and Future Work462

This paper presents a novel, fully automated mode-based reactive synthesis463

method. Taking an LTL (GX0) specification and a set of modes (with optional464

transitions) as input, our iterative algorithm efficiently searches for initial con-465

dition combinations that realize the overall specification or concludes unrealiz-466

ability. This automatic search for suitable initial conditions is a key feature of467

our approach, simplifying the synthesis process for engineers.468

A current limitation is that completeness for unrealizability requires mode-469

based determinism and a subsuming mode-graph, which we plan to address in fu-470

ture work. However, our method achieves significantly faster synthesis compared471

to monolithic methods, enabling more effective derivation of controllers for com-472

plex real-world specifications, as supported by a thorough empirical evaluation.473

Future work will also explore controller explainability and consider extensions474

to richer LTL fragments.475
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